
UCM2 Programming Manual Manual

UCM2 Programming Manual
Installation and Programming Manual

This line describes the purpose of the manual. It and the "Document Tltle" can
be modified by selecting File/Properties...

Effective: May 29, 2015

Niobrara Research & Development Corporation
P.O. Box 3418 Joplin, MO 64803 USA

Telephone: (800) 235-6723 or (417) 624-8918
Facsimile: (417) 624-8920
http://www.niobrara.com

POWERLOGIC, SY/MAX, and Square D are registered trademarks of Square D
Company.

Subject to change without notice.

© Niobrara Research & Development Corporation 2015. All Rights Reserved.

Contents

1 UCM2 Programing Overview...9
2 UCM2 Language Definitions..11

Constant Data Representation <const>...11
Decimal Integers...11
Signed Integers...12
Hexadecimal Integers...12
Boolean Constants..12
Floating Point Numbers..12
Reserved Constants..12

Variable Data Representation..13
Arithmetic Expressions <expr>..14

Numeric Operators...14
Precedence of Operators...14
Numeric Functions...14

Labels <label>...16
Logical Expressions <logical>..16

Logical Operators...16
Relational Operators...17

Functions - <function>..17
Message Descriptions <message description>......................................18

Literal String <string>..18
Message Functions...19

Variable Fields...20
Transmit usage of Variable length..20
ON RECEIVE usage of Variable length...21

Message Assignments...21
3 UCM2 Language Statements..23

Assignments..23
BAUD...24
CAPITALIZE...24
CLEAR...25
CLOSE...25
CONNECT...25
DATA..25
DEBUG..25

iii

DECLARE..25
DEFINE..27
DELAY...28
DUPLEX..28
ERASE...28
EXPIRED...28
FOR...NEXT...28
FLUSH...29
GOSUB...RETURN..29
GOTO...29
IF...THEN...ELSE...ENDIF..29
LCD..30
LIGHT..31
LISTEN..31
MOVE..32
MULTIDROP...32
NICE...32
ON CHANGE...33
ON <expression>..33
ON RECEIVE KEYPAD x...33
ON RECEIVE PORT x...34
ON RECEIVE SOCKET x...34
ON TIMEOUT...34
PARITY..34
READ FILE..34
REPEAT...UNTIL...35
RETURN..35
SET...35
SET PORT x BAUD <const>...36
SET PORT x CAPITALIZE <const>...36
SET SOCKET x CAPITALIZE <const>..36
SET PORT x CTS <const>...36
SET PORT x DATA <const>..36
SET DEBUG <const>..36
SET PORT x DUPLEX <const>..36
SET LIGHT <exp> <const>...37
SET MODE <const>..37
SET SOCKET <socket> NAGLE <const>......................................38
SET PORT x MULTIDROP <const>...38
SET PORT x RTS <const>...38
SET PORT x DATA <const>..39
SET PORT x PARITY <const>..39
SET PORT x PPPUSERNAME <string const|string variable>........39
SET PORT x PPPPASSWORD <string const|string variable>........39

iv Contents

SET PORT x PPPHANGUP...39
SET PORT x STOP <const>...39
SET (bit)...39
SOCKETSTATE...39
STOP..40
STOP (BITS)..40
SWITCH...CASE...ENDSWITCH...40
TOGGLE..40
TOGGLE LIGHT...41
TRANSMIT..41
WAIT..41
WHILE...WEND..41
WRITE FILE..41

4 UCM2 Language Functions..43
Checksum Functions...43

CRC..43
CRC16..43
CRCAB...43
CRCBOB..44
CRCDNP..44
LRC..44
LRCW...44
SUM...45
SUMW..45

Message Description Functions..45
BCD Binary - Coded Decimal conversion.......................................45
BYTE Single - (lower) byte conversion...46
DEC Decimal - conversion...46
HEX Hexadecimal - conversion...46
HEXLC Lower - Case Hexadecimal conversion..............................47
IDEC conversion..47
LONG...48
OCT Octal - conversion..48
RAW – Raw register conversion..49
RWORD...49
TON – Translate on..50
TOFF – Translate off..50
UNS – Unsigned decimal conversion...50
WORD..51

Receive Buffer Functions..51
WAITCHAR(<receive_buffer_variable>)..51
GETCHAR(<receive_buffer_variable>)..51
COUNTCHAR(<receive_buffer_variable>)....................................51

Other Functions...52

Contents v

APPLICATION..52
CHANGED...52
MAX...52
MIN..52
SWAP...52
THREAD..52
RTS...53
CTSx...53

5 Examples...55
TRANSMIT message function with register references.......................55

TRANSMIT HEX...55
TRANSMIT DEC...56
TRANSMIT UNS...56
TRANSMIT OCT...57
TRANSMIT BCD...58
ON RECEIVE message functions with register references..............58
ON RECEIVE HEX...59
ON RECEIVE DEC...60
ON RECEIVE UNS...61
ON RECEIVE OCT...62
ON RECEIVE BCD...64
ON RECEIVE RAW..64
ON RECEIVE BYTE...66
ON RECEIVE WORD...66
ON RECEIVE RWORD...66

6 Compiling..69
QCOMPILE.EXE...69

-O option...69
-D option...69
-L option...70
-S option...70
-W option..70

Compiler Errors...70
Debugging..70

7 Downloading Compiled Code...73
QLOAD.EXE..73

QLOAD using Serial Port..73
QLOAD using Ethernet Port..76

Figures
Figure 7.1: Change Application Switch to Halt...73
Figure 7.2: QLOAD Application...74

vi Contents

Figure 7.3: QLOAD Progress..75
Figure 7.4: Change Application Switch to Halt...75
Figure 7.5: Restart the Application..76
Figure 7.6: Change Application Switch to Halt...76
Figure 7.7: QLOAD Application...77
Figure 7.8: QLOAD Progress..78
Figure 7.9: Change Application Switch to Halt...78
Figure 7.10: Restart the Application..79

Tables
Table 2-1: Constant Data Types...11
Table 2-2: Numeric Operators...14
Table 2-3: Checksum Functions...15
Table 2-4: Additional Functions...16
Table 2-5: Logical Operators...17
Table 2-6: Relational Operators...17
Table 2-7: Message Functions...19
Table 3-1: Referencing Bits in Different Variable Types...24
Table 3-2: Declared Variable Types...27
Table 3-3: Well Known TCP Port Numbers...32
Table 3-4: UCM2 Internal File List...35
Table 3-5: UCM2 Internal File List...42

Contents vii

1 UCM2 Programing Overview

The user programs that run in the UCM2 are known as Applications. Applications are
written in the UCM2 language with a text editor, compiled with the QCOMPILE
program, and downloaded into the UCM2 to run. The UCM2 allows up to two
Applications to run at the same time. Each Application has its own separate memory for
variables as well as shared access to the PLC Rack I/O interface via the INPUT[x]
registers and the OUTPUT[x] registers. Applications may be divided into multiple
THREADs which multitask within the Application. Up to sixty four THREADs may be
written into an Application.

The Application has full access to the serial ports, the optional Ethernet port, LCD,
Keypad, and as mentioned above the PLC I/O registers. Communication messages are
sent from an Application using the TRANSMIT statement and are received with the ON
RECEIVE statement. Built-in functions for calculating check-sums are provided. The
general outline for a UCM2 application is shown below:

{Comments}

DECLARE global_variables

FUNCTIONS

{general startup configuration code}

THREAD 1

DECLARE local_variables

{thread 1 application code as an endless loop}

THREAD 2

DECLARE local_variables

{thread 2 application code as an endless loop}

Application code located before thread 1 is processed first as the application starts and
then all threads start at the same time. Declares located before thread 1 are global and
accessible in any of the threads. Declares within a thread are local only to that thread.

UCM2 Programming Manual Manual 9

Warning: Applications that serve up web pages from the Quantum back-plane
may be in violation of the following patents:

1. Patent no. 5,805,442

2. Patent no. 5,975,737

3. Patent no. 5,982,362

4. Patent no. 6,061,603

5. Patent no. 6,282,454

If you are writing an application that serves up web pages, you should contact
Schneider Automation before proceeding.

10 UCM2 Programing Overview 1 UCM2 Programming Manual Manual

2 UCM2 Language Definitions
The UCM2 language is its own unique structured language, although the user will
probably notice similarities with BASIC, PASCAL, and C. Labels are used to control
program flow. Line numbers are not required. The following definitions apply through
this manual:

Constant Data Representation <const>

If numeric data is to remain the same during the entire operation of the UCM2 program
then they should be treated as constants. The UCM2 supports unsigned decimal integers
(16 bits), signed decimal integers, hexadecimal integers, long integers (32 bit), floating
point numbers (32 bit), boolean constants, and a few reserved constants. The use of a
constant is referred to as <const> in this manual.

Decimal Integers

Decimal integers are defined as the unsigned whole numbers within the range from 0
through 65,535. The following are examples of decimal integers:

0

UCM2 Programming Manual Manual 11

Table 2-1: Constant Data Types

Constant Data Type Range Prefix Symbol

Decimal 0...65,535 NA

Signed Integer 32768...32767 NA

Hexadecimal Integer 0...FFFF x

Long Integers 0...4294967295 NA

Floating Point 8.43 x 10E37...3.402 x 10E38

Boolean Constants TRUE, FALSE NA

Reserved Constants EVEN,ODD,NONE NA

32114

59

65311

Signed Integers

Signed integers are defined as the whole numbers within the range from -32768
through 32767. The following are examples of signed integers.

-514

0

31

-1

Hexadecimal Integers

Hexadecimal integers are defined as the hexadecimal representation of the whole
numbers within the range from 0 through FFFF. Hexadecimal numbers are
defined by the prefix x. The following are examples of hexadecimal constants:

x12AB

xf34c

x15

Boolean Constants

There are two predefined boolean constants: TRUE and FALSE. The following
are valid uses of the boolean constants:

SET CAPITALIZE FALSE

SET DEBUG TRUE

Floating Point Numbers

Floating point constants must end with a decimal point and at least one decimal
place. The following are valid floating point examples:

-1.0

3.14159

2.5E-11

Reserved Constants

The following constants are reserved for the use in the SET PARITY statement:
EVEN, ODD, and NONE. The following are valid uses of the reserved constants:

SET PARITY EVEN

SET PARITY ODD

12 UCM2 Language Definitions 2 UCM2 Programming Manual Manual

SET PARITY NONE

Variable Data Representation

The UCM2 uses alpha-numeric names for variables and each variable must be
expliciately declared using the DECLARE statement. The possible variable types
supported by the UCM2 are listed below:

• BYTE (8 bits signed)

• UNSIGNED BYTE (8 bits unsigned)

• WORD (16 bits signed)

• UNSIGNED WORD (16 bits unsigned)

• LONG (32 bits signed)

• TIMER (32 bits signed)

• FLOAT (32 bits signed)

• STRING (an array of 8 bit bytes)

• SOCKET (Ethernet IP socket)

If a type is not included in the DECLARE then the type defaults to a SIGNED
WORD. It is also possible to define single dimensional arrays of variables using
the form variable[size], and two-dimensional arrays using the form
variable[Asize, Bsize]. Valid array indices for array[N] are 0..(N-1). Multiple
variables may be declared on a single statement with commas as separators. The
following statements are valid DECLARE examples:

DECLARE BYTE apple

DECLARE WORD x, y, zebra

DECLARE WORD r[100], group[10]

DECLARE SOCKET s[8], mysock

DECLARE STRING in[25]

DECLARE WORD a, b, c FLOAT x, y, z {the , after the c is optional. a,
b, and c are words and x, y, and z are floats.}

There are two predefined arrays of words that are fixed and reserved: INPUT[x]
and OUTPUT[x]. The INPUT[x] array ranges from index 0 through 31 inclusive
and refers to the 32 possible PLC input (3x) registers on the backplane. These
words are PLC Read-Only and may be modified only by the UCM2 applciations.
The OUTPUT[x] array ranges from index 0 through 2015. Index values 0
through 31 are reserved for the 32 possible PLC OUTPUTs (4x registers) and are
Read-Only to the UCM2 applications. OUTPUT[32] through OUTPUT[2015]
are Read/Write by the UCM2 Applications. The OUTPUT and INPUT variables
are global to Applications and all Threads within the Application. Variables
declared before the first THREAD statement are global to a given Application.
Variables declared within a THREAD are local to that Thread.

UCM2 Programming Manual Manual 2 UCM2 Language Definitions 13

Arithmetic Expressions <expr>

Numeric expressions, referred as <expr> in this manual, involve the operation of
variables and constants through a precedence of operators and functions.

Numeric Operators

Precedence of Operators

The order of precedence of supported numeric operators are as follows:

1. Sub expressions enclosed in parentheses

2. Unary Negation or Unary Complement

3. *, /, % From left to right within the expression.

4. +, From left to right within the expression.

5. <<, >> From left to right within the expression.

6. &, ^, | From left to right within the expression.

Numeric Functions

The UCM2 supports a group of seven checksum calculating functions to be used

14 UCM2 Language Definitions 2 UCM2 Programming Manual Manual

Table 2-2: Numeric Operators

Numeric
Operators

Description Eample

+ Addition x+5

- Subtraction OUTPUT[10]-5

* Multiplication Apple*5

/ Divison Z/5

% Modulus OUTPUT[25]%5

& Bitwise AND OUTPUT[25]&x100

| Bitwise OR OUTPUT[25]|x100

^ Bitwise Exclusive OR INPUT[25}^x100

>> Bitwise Shift Right BYTE>>4

<< Bitwise Shift Left I<<2

- Unary Negation -OUTPUT[25]

~ Unary Bitwise Complement ~OUTPUT[25]

() Parentheses (OUTPUT[25]+5)*3

only within message descriptions:

The first <expr> is the starting index. The next <expr> is the ending index. The
last <expr> is the initial value usually 0 or 1.

UCM2 Programming Manual Manual 2 UCM2 Language Definitions 15

Table 2-3: Checksum Functions

Function Description

CRC(<expr>,<expr>,<expr>) Cyclical Redundancy Check (CCITT Standard)

CRC16(<expr>,<expr>,<expr>) Cyclical Redundancy Check

CRCAB(<expr>,<expr>,<expr>) Special CRC16 for AB applications

CRCBOB(<expr>,<expr>,<expr>) Special CRC16 for BinMaster SmartBob
applications

CRCDNP(<expr>,<expr>,<expr>) Special CRC16 for DNP 3.00 applications

LRC(<expr>,<expr>,<expr>) Longitudinal Redundancy Check by byte

LRCW(<expr>,<expr>,<expr>) Longitudinal Redundancy Check by word

SUM(<expr>,<expr>,<expr>) Straight Sum by byte

SUMW(<expr>,<expr>,<expr>) Straight Sum by word

These additional functions are also provided:

Labels <label>

The UCM2 supports alphanumeric labels for targets of GOTO and GOSUB
functions. The label consists of a series of characters ended with a colon. Labels
must start with an alphabetic character, numbers are not allowed as the first
character in a Label. Labels may not be the exact characters in a UCM2 language
reserved word. The label TIMEOUTLoop: is valid while TIMEOUT: is not valid.

Logical Expressions <logical>

The UCM2 supports the following logical operators and relational operators.
These are referred to as <logical> elsewhere in this manual.

Logical Operators

16 UCM2 Language Definitions 2 UCM2 Programming Manual Manual

Table 2-4: Additional Functions

Function Description Example
OUTPUT[45]=x1234,
OUTPUT[46]=xABCD

MIN(<expr>,<expr>) Provides a result of the
<expr> which evaluates
to the smaller of the
two expressions.

OUTPUT[100] =
MIN(OUTPUT[45],OUT
UT[46]) results in
OUTPUT[100] = x1234

MAX(<expr>,<expr>) Provides a result of the
<expr> which evaluates
to the larger of the two
expression.

OUTPUT[100] =
MAX(R[45]*x0A,OUTP
T[47]) results in
OUTPUT[100] = x65E0

SWAP(<expr>) Reversed the byte order
of the register.

OUTPUT[100] =
SWAP(OUTPUT[46]) results
in OUTPUT[100] = xCDAB

Relational Operators

Functions - <function>

Functions are general purpose sections of code that may be accessed from
multiple threads and other functions in an application. Functions are similar to a
subroutine where the parameters are passed to/from the function during the call.

Memory for variables declared within a function are allocated when the function
is called, and the memory is freed when the function exits. Variable names within
a function can have the same name as global or thread local variables. When a
variable is referenced within a function, the compiler checks first for function
local variables, then for thread local variables, then for global variables by that
name.

NOTE: At the present time, only "word" variables may be passed as parameters
to functions. If the function must process long, byte, string, float, or arrays then
they must be declared as global.

FUNCTION <function name> <comma separated variable list>

(function body)

UCM2 Programming Manual Manual 2 UCM2 Language Definitions 17

Table 2-5: Logical Operators

Logical
Operators

Definition Example

AND Result TRUE if both TRUE IF <expr> AND <expr> THEN

OR Result TRUE if one or both TRUE IF <expr> OR <expr> THEN

NOT Inverts the expression IF NOT(<expr>) THEN

Table 2-6: Relational Operators

Relational Operators Definition Example

< LESS THAN IF <expr> < <expr> THEN

> GREATER THAN IF <expr> > <expr> THEN

<= LESS THAN or EQUAL IF <expr> <= <expr> THEN

>= GREATER THAN or EQUAL IF <expr> >= <expr> THEN

 = EQUAL IF <expr> = <expr> THEN

<> NOT EQUAL IF <expr> <> <expr> THEN

ENDFUNC <returned variable list>

FUNCTION AVERAGE (VALUE1, VALUE2)

DECLARE WORD RETURNVALUE

RETURNVALUE = (VALUE1 + VALUE2) / 2

ENDFUNC(RETURNVALUE)

or

FUNCTION SQUARE (VALUE)

ENDFUNC (VALUE * VALUE)

Message Descriptions <message description>

The <message description> refers to the actual serial data that is transmitted from
the UCM2 port or expected data that is to be received by the port. The <message
description> may include literal strings, results of various message functions and
the concatenation of the above.

Literal String <string>

A literal string is a string enclosed in quotes. "This is a literal string."

Literal strings may include hexadecimal characters by form \xx where xx is the
two digit hex number of the character. This is useful for sending non-printable
characters. "This is another literal string.\0D\0A" will print the message with a
carriage return (0D) and a line feed (0A).

Embedded quotation marks may be included in literal strings by the insertion
of \" in the location of the embedded quote. "This will print a \"quote\" here."

Embedded \ characters may similarly be inserted by using \\.

String Variables

String variables may be embedded directly into a message description:

DECLARE STRING ALPHA[20]

ALPHA = "ABC123"

TRANSMIT PORT 1 "=BEFORE=":ALPHA:"=AFTER="

would send the string =BEFORE=ABC123=AFTER= out serial port 1. Similarly,
string variables may be embedded directly into ON RECEIVE statements:

ON RECEIVE PORT 1 ALPHA:"\0D" GOTO NEXT

would place all characters received before the Carriage Return (0x0D) into the
string variable ALPHA. Care must be taken to ensure that the data read into the
string is not longer than the string declaration. For instance, if the above ON
RECEIVE were to attempt to put 21 characters into ALPHA, which was declared
with a length of 20 bytes, the program would halt, with runtime stop code 7

18 UCM2 Language Definitions 2 UCM2 Programming Manual Manual

(Value out of bounds).

Message Functions

The UCM2 can perform a variety of functions on transmitted and received data.
When the UCM2 is using these functions for transmitting, register data and
expressions are turned into strings according to the function’s rules. When the
UCM2 is using these functions for receiving, incoming strings are either matched
to the strings that the UCM2 expected to receive or they are translated into data
and stored in registers.

The following is a list of message functions, each function is described in more
detail on pages 45 through 51.

The message functions that take the form FUNC(<expr>,<expr>) use the
following rules: When using these functions with TRANSMIT, the first <expr> is
the data to be translated and transmitted. When using these functions with ON
RECEIVE, replace the first <expr> with <variable> to have the incoming string
translated and placed into the register OUTPUT[] or use (<expr>) to have the
expression evaluated and matched to the incoming string. The second <expr> in
the these functions is the number of characters either to transmit or to receive. An
error will be generated at compile or run time if this expression evaluates to less

UCM2 Programming Manual Manual 2 UCM2 Language Definitions 19

Table 2-7: Message Functions

Functions Description

BCD(<expr>) Binary Coded Decimal conversion

BYTE(<expr>) Least Significant (low) byte conversion

DEC(<expr>,<expr>) Decimal conversion (base 10) 32768 to 32767

HEX(<expr>,<expr>) Hexadecimal conversion (base 16)

IDEC(<expr>,<expr>) IDEC format hexadecimal conversion

OCT(<expr>,<expr>) Octal conversion (base 8)

RAW(<variable>,<expr>) Sends/Receives high byte then low byte of a
register(s)

RWORD(<expr>) Sends/Receives low byte of an expression

UNS(<expr>,<expr>) Unsigned decimal conversion (base 10) 0 to 65,535

WORD(<expr>) Sends/Receives high byte then low byte of an
expression

than zero.

RAW takes the form RAW(<variable>,<expr>). In this case the first <expr> is the
starting register number and the second <expr> is the number of characters.
Always uses the high byte first and then the low byte.

The message functions that take the form FUNC(<expr>) have fixed character
lengths. BYTE transmits one character, the least significant byte, while WORD
and RWORD each transmit two characters. WORD transmits the most significant
byte and then the least significant byte while RWORD reverses the order, least
significant then most significant. As in the previous message functions, when
transmitting use <expr> and when receiving either use <variable> to receive and
place in a register or (<expr>) to evaluate and match. For examples of the
message functions see Chapter 5 Examples.

In all of the message functions, only characters from the valid character set for
that command can be used.

Variable Fields

The width field of any transmit or receive element (that has a width) may be
replaced with either of two constructions. (Transmit RAW is an exception as
shown below.) The first is just the word VARIABLE, i.e. TRANSMIT
DEC(OUTPUT[10],VARIABLE). The second is VARIABLE followed by a
register reference, i.e. TRANSMIT HEX(OUTPUT[11],VARIABLE
OUTPUT[10]) which will write the actual width to the specified register.

Transmit usage of Variable length

A variable field in a TRANSMIT statement means one encoded with only the
necessary number of digits (no leading zeros).

For example, if OUTPUT[11] = 1234 then

TRANSMIT PORT 1 "$":DEC(OUTPUT[11], variable OUTPUT[10]):"#"

would send out the string $1234# and OUTPUT[10] would have the value 4. If

OUTPUT[11] = 89 then the string $89# would be transmitted and OUTPUT[10]
would equal 2.

This type of transmit structure applies to the BCD, UNS, DEC, HEX, OCT, and
IDEC formats. The TRANSMIT RAW variable structure requires a terminator
byte of 00 hex at the end of the raw string.

The transmit raw variable sends up to but not including the null terminator. The
optional count register does not include the terminator in the count.

For example, if OUTPUT[11]=x486F, OUTPUT[12]=x7764, and
OUTPUT[13]=x7900 then TRANSMIT PORT 1 "$":RAW(OUTPUT[11],
VARIABLE OUTPUT[10]):"#" would send the string $Howdy# and
OUTPUT[10] would equal 5. If OUTPUT[12]=x0000 then the string $Ho#
would be transmitted and OUTPUT[10] would equal 2.

20 UCM2 Language Definitions 2 UCM2 Programming Manual Manual

ON RECEIVE usage of Variable length

A variable field in an ON RECEIVE statement must be followed by a literal field
such as "\0d". The first character of the literal field works as a terminator.

For example, A device sends a variable length number with a fixed number of
decimal points such as $125.01 or $3.99; the decimal point may be used as a
terminator and it could be handled as follows:

ON RECEIVE port 1 "$":dec(OUTPUT[100],variable):".":dec(OUTPUT[101],2)

In the case of $125.01, register OUTPUT[100] = 125 and OUTPUT[101] = 1.
For $3.99, register OUTPUT[100] = 3 and OUTPUT[101] = 99.

The ON Receive raw variable writes an extra zero byte to the registers following
the received data. In the case of an odd number of characters, the last register
contains the final character in the MSB and a zero in the LSB. In the case of an
even number of characters, all 16 bits of the register following the last two
characters are set to zero. This null terminator is not included in the count
optionally reported.

For example: A device transmits a variable length error message terminated with
a carriage return and line feed.

ON RECEIVE port 1 RAW(OUTPUT[500], variable OUTPUT[200]):"\0d\0a"
will accept the message and place it in packed ASCII form starting at register
500. Register 200 would hold the number of characters (bytes) accepted in the
string not including the carriage return or line feed.

Message Assignments

It is sometimes convenient to apply the message descriptions of a TRANSMIT
message and store the message in a variable in the UCM2 rather than transmit the
string. This is possible by simply using the assignment character = to a string
variable.

STRINGVARIABLE = <message>

The message will be placed in the string variable and the LENGTH of the string
will be set to the number of character is <message>. Any valid transmit message
may be stored in this manner.

For example:

STRINGVAR = "Hello!\0d\0a"

would result in the string STRINGVAR containing the string "Hello!\0d\0a"
(where \0d and \0a are Carriage Return, and Line Feed, respectively).Something
more obviously useful might be:

STRINGVAR =
byte(Device):"\03":word(Address):word(Count):rword(crc16(1,$1,0))

which would place the reversed word of the checksum in register at the end of the

UCM2 Programming Manual Manual 2 UCM2 Language Definitions 21

string.

22 UCM2 Language Definitions 2 UCM2 Programming Manual Manual

3 UCM2 Language Statements
The UCM2 language statements are described in this chapter. Statements control the
operation of the UCM2 by determining the flow of the program.

The format of these statements includes the definitions from Chapter 2 UCM2 Language
Definitions. Whenever one of these definitions is referenced in a statement it is enclosed
in brackets <>. For example, whenever a statement requires an expression it will appear
as <expr>. The words statement and command are used interchangeably.

The word newline means a carriage return, line feed or both, whatever your text editor
requires. Most commands do not require newlines but those that do use the word newline.
Since most commands do not requires newlines, multiple statements can be placed on a
single line. A whole program could be written on a single line if no statements that
require a newline are used. For readability, newlines between statements can be used
without penalty.

Also note that, except in strings, capitalization in the UCM2 program is ignored by the
UCM2 and its compiler. The label Tom: is the same as the label TOM:. In literal strings,
which are enclosed in quotes "", the capitalization is maintained by the UCM2. The
command SET CAPITALIZE can effect the way the UCM2 handles ASCII characters on
transmitting and receiving.

Program flow within a THREAD is sequential, from the first statement to the second
statement to the third statement etcetera, unless a program flow control statement is
reached. Program flow statements can be jumps (GOTO or GOSUB), loops or
conditionals (IF...THEN ...ELSE...ENDIF). After a jump, program flow is still sequential
starting with the statement immediately after the label. Loops can be accomplished with
FOR...NEXT, REPEAT ...UNTIL, or WHILE...WEND.

Assignments

The UCM2 language allows for the assignment of values to variables and bits of
variables. These assignments are similar to the BASIC LET statement.

variable[<expr>]=<expr>

This statement sets the variable specified by the first <expr> to the value obtained
by the second <expr>. The valid range of variable numbers in the first <expr> is
dependent upon the DECLARED range of the variable.

UCM2 Programming Manual Manual 23

variable[<expr>].<const>=<logical>

This statement sets a single bit of a variable to be one (TRUE) or zero
(FALSE). The <expr> can have the values defined by the DECLARE of
the variable. The valid values for <const> depend on the type of <Expr>
(see Table 3-1, below). <Logical> can have the values TRUE or FALSE.

<variable>.(<expr>)=<logical>

This statement sets the bit of a register to be the evaluation of the
<logical> segment.

<variable>.<variable>=<logical>

This statement sets the bit of a register to be the evaluation of the
<logical> segment.

<variable>=<message description>

This statement sets the string variable specified by the <expr> to the
ASCII values obtained by evaluation of the <message description>. The
<message description> may be any valid message used in a TRANSMIT
command.

BAUD

See SET BAUD on page 36.

CAPITALIZE

See SET CAPITALIZE on page 36.

24 UCM2 Language Statements 3 UCM2 Programming Manual Manual

Table 3-1: Referencing Bits in Different Variable Types

Variable Type Range of Bits Bit Significance

OUTPUT[N] and
INPUT[N]

1...16 Modicon Bit Numbering: Most Significant
Bit (MSB) = Bit 1 … LSB = Bit 16

BYTE 0...7 IEC Compliant Bit numbering:

MSB = Bit 7 ... LSB = Bit 0

WORD 0...15 IEC Compliant Bit numbering:

MSB = Bit 15 ... LSB = Bit 0

LONG, TIMER 0...31 IEC Compliant Bit numbering:

MSB = Bit 31 ... LSB = Bit 0

CLEAR

CLEAR variable[<expr>].<const> or CLEAR variable[<expr>].(<expr>)

The CLEAR statement sets a single bit of a variable to ZERO. The bit
number <const> or <expr> must evaluate within the range of 1-16 for
OUTPUT registers, 0-7 for bytes, 0-15 for words, and 0-31 for long
variables. To clear a single bit of a register to be set to one use the SET
statement.

CLOSE

CLOSE SOCKET <socket variable> [TIMEOUT <expr>]

Closes the open IP connection associated with <socket variable>. The
optional TIMEOUT specifies how long the UCM2 TCP/IP stack will wait
for the other device to acknowledge the request to close the connection
before aborting (resetting) the connection. If no TIMEOUT is specified,
the UCM2 will wait indefinitely for the other device to acknowledge the
close request. A TIMEOUT value of zero will cause the connection to be
immediately closed, without the other devices’ acknowledgment.

CONNECT

CONNECT <protocol> SOCKET <socket variable> <IP Address> PORT <port
number>

Connect opens an IP connection using the <protocol> to the remote <IP
Address> on the <portnumber>.

NOTE: Only <protocol>= TCP is presently supported.

The <IP Addresss> must be a comma separated decimal notation:

DECLARE SOCKET S, BYTE HOST[4]

HOST = 206,223,51,161

CONNECT TCP SOCKET S HOST PORT 80

would establish a connection to port 80 of the device with IP address
206.223.51.161.

DATA

See SET DATA on page 36.

DEBUG

See SET DEBUG on page 36.

DECLARE

DECLARE [SIGNED|UNSIGNED] [<variable type>} <variable name>[[array
size]]

UCM2 Programming Manual Manual 3 UCM2 Language Statements 25

The DECLARE statement is a compiler instruction which creates a
variable named <variable name> of type <variable type>. Variables may
be declared anywhere in the program, as long as they are declared before
they are referenced. Variables declared before the first THREAD
statement will be global in scope, thus will be accessible to all the threads.
Variables declared after a THREAD statement will be accessible only
within the thread in which it was declared. Variables declared within a
FUNCTION will be accessible only within that function.

If the SIGNED/UNSIGNED specification is omitted, the variable created
will be SIGNED. If the <variable type> is omitted, a WORD variable will
be created. Thus the statement:

DECLARE FOO

will create a variable named FOO, which is a signed word variable.
Multiple variable types may be declared in one DECLARE statement:

DECLARE BAR, STRING A[40], B[30], FLOAT X, Y[10]

would create five variables: BAR is a signed word, A is a string with
maximum length of 40 bytes, B is a string with a maximum length of 30
bytes, X is a floating point variable, and Y is an array of ten floating point
variables (Y[0] … Y[9]).

When a variable is referenced (i.e. Y[0] = 0.0), the compiler first checks
whether the variable is a function local variable (if the statement is inside
a function), then checks whether the variable is a thread local variable (if
the statement is multi-threaded, and the statement appears after a
THREAD statement), then checks whether the variable was defined as a
global variable. Thus, the same variable name may be used in different
threads, and each thread will access a different variable.

The available <variable types> are:

26 UCM2 Language Statements 3 UCM2 Programming Manual Manual

DEFINE

DEFINE <macro>=<replacement string> newline

UCM2 Programming Manual Manual 3 UCM2 Language Statements 27

Table 3-2: Declared Variable Types

Variable
Type

Description Bytes
Used

Range

UNSIGNED
BYTE

Unsigned Byte (8bit)
variable.

1 0...255

SIGNED
BYTE

Signed Byte (8bit) variable. 1 -128…127

UNSIGNED
WORD

Unsigned Word (16bit)
variable.

2 0...65535

SIGNED
WORD

Signed Word (16bit)
variable

2 -32768...32767

UNSIGNED
LONG,
TIMER

Unsigned Long Word
(32bit) variable.

4 0...4294967296

SIGNED
LONG

Signed Long Word (32bit)
variable.

4 -2147483648...2147483647

FLOAT IEEE format 32bit Floating
Point variable. Float
variables are always
signed.

4

STRING String variable. Must be
declared as an array:

DECLARE STRING A[40]

2 +
String
Length

Strings in the UCM2 are
NOT zero-terminated, thus
each byte may contain ANY
value, including zero.

SOCKET Socket structures are used
for TCP Ethernet
connections. Values in the
structure are not directly
accessible, except through
statements (CONNECT,
LISTEN, TRANSMIT, ON
RECEIVE) and functions
(SOCKETSTATE ()).

1538

The DEFINE statement is a compiler instruction for a global find and
replace. When the UCM2 program is compiled the compiler finds every
string <macro> and replaces it with the the string <replacement string>.
Both <macro> and <replacement string> are type <string>. A newline is
required to define the end of the replacement string. Use of this statement
can help the readability of the user program and also make the program
easier to write.

DELAY

DELAY <expr>

The DELAY statement forces the UCM2 to pause in its execution of other
instructions until a period of time equal to <expr> times 1mS has expired.
Valid range is 0 to xFFFFFFFF.

DUPLEX

See SET DUPLEX on page 36.

ERASE

ERASE <variable>

The ERASE command initializes a variable or array to zero.

EXPIRED

ON EXPIRED(<variable>) GOTO <variable>

IF EXPIRED(<variable>) THEN <expression>

The EXPIRED command is used in conjunction with a declared timer to
allow the user to perform other functions based on a timeout. A timer is
declared, and a value in milliseconds is assigned in one or two commands.
The user can then use the EXPIRED command to check if the timer has
run out.

FOR...NEXT

The FOR ... NEXT statement provides the ability to execute a set of
instructions a specific number of times. The variable <variable> is
incremented from the value of the first <expr> to the value of the second
<expr>. Once the variable is greater than the second <expr>, control
passes to the next program statement following the NEXT. If the optional
STEP expression is included, the variable <variable> is incremented by
the value equal to the STEP <expr>. If the STEP <expr> is not present a
step of 1 is assumed.

FOR <variable>=<expr> TO <expr>

one or more statements

NEXT

28 UCM2 Language Statements 3 UCM2 Programming Manual Manual

FOR <variable>=<expr> TO <expr> STEP <expr>

one or more statements

NEXT

FOR ... NEXT loops may be constructed to decrement from the first
<expr> to the second <expr> using the DOWNTO function. The STEP
<expr> must be a negative number. If STEP <expr> is not present a step
of 1 is assumed.

FOR <variable>=<expr> DOWNTO <expr>

one or more statements

NEXT

FOR <variable>=<expr> DOWNTO <expr> STEP <expr>

one or more statements

NEXT

FOR...NEXT loops may be nested any number of levels.

FLUSH

FLUSH PORT x

The FLUSH statement empties the receive buffer for the specified port.

GOSUB...RETURN

GOSUB <label>

The GOSUB statement turns control of a program to another area of code
while expecting to get control back from a RETURN statement. It is
useful for program flow control where one section of code may be used
several times. Somewhere in the program flow following <label> needs to
be a RETURN statement. The RETURN statement returns program
control back to the GOSUB statement that caused the jump. After a
RETURN the UCM2 will continue running using the statement
immediately following the GOSUB.

GOTO

GOTO <label>

The GOTO statement turns program control over to another area of code.

IF...THEN...ELSE...ENDIF

The IF ... THEN statement is used to control the program flow based upon
the logical evaluation of the expression in <logical>. When <logical> is
true, the statements following the THEN are executed. If <logical> is
false the statements following the ELSE are executed.

UCM2 Programming Manual Manual 3 UCM2 Language Statements 29

IF <logical> THEN one or more statements followed by newline

IF <logical> THEN one or more statements ELSE one or more statements
followed by a newline

When more statements are required for an IF ... THEN, the statements
may be placed on additional lines below the IF ... THEN. The ENDIF
statement indicates the termination of the IF statement.

IF <logical> THEN newline

one or more statements

ENDIF

IF <logical> THEN newline

one or more statements

ELSE

one or more statements

ENDIF

LCD

The LCD commands allow user application to access the LCD screen.

Until a user application accesses the LCD screen, the OS “owns” the
screen. After the user app accesses the LCD, it is thereafter owned by the
user application. The only way for the user app to relinquish the LCD is
to halt; this can be done by holding down the Up and Enter buttons
simultaneously for ~3 seconds.

The process of copying a new page of data to the LCD is (relatively)
slow, so all drawing functions operate on a copy of the screen in
UCM2 RAM. When the page is fully completed, then the
command LCD UPDATE writes the RAM buffer out to the LCD. Not
only does this speed up drawing (compared to writing directly to LCD)
but it also allows for smoother (instantaneous) transitions between
screens.

Function Name Parameters Description

LCD ERASE none Clear buffer

LCD HLINE X1,Y1,X2 Draw horizontal line

LCD VLINE X1,Y1,Y2 Vertical line

LCD LINE X1,Y1,X2,Y2 Draw any line (incl diagonal)

LCD BOX X1,Y1,X2,Y2 Draw a rectangle

LCD INVERT X1,Y1,X2,Y2 Invert pixels in rectangle

LCD BLANK X1,Y1,X2,Y2
Clear (turn off) pixels in
rectangle

30 UCM2 Language Statements 3 UCM2 Programming Manual Manual

LCD BLOCK X1,Y1,X2,Y2 Set (turn on) pixels in rectangle

LCD SET X,Y Set a pixel (on)

LCD CLEAR X,Y Turn a pixel off

LCD WRITE X,Y,Font,Message Write string to buffer

LCD CWRITE Y,Font,Message Center string L-R

LCD UPDATE none Write buffer to LCD

LCD BACKLIGHT Timeout
Force backlight ON for Timeout
duration in milliseconds

LCD TIMEOUT Interval
For trigger to repaint screen,
sends char 'T' every Interval ms

Parameters in the table:

X,Y - Coordinates on the display are zero-based. X may range from 0 to
63, while Y may range from 0 to 127.

Fonts - The fonts accessible from the UCM user code are enumerated as
shown in the table below. Fonts as loaded in the OS can be a subset of the
font set (to save memory or avoid useless characters) but apparently all
the fonts included in the OS at this time include all the characters from
Space through 0x7F.

Font # Font Name Character
Width

Character
Height

1 Terminal 5 4 6

2 Terminal 6 6 8

3 Terminal 8 8 12

4 Terminal 12 12 16

5 Courier 10 8 13

6 Courier 12 9 16
Message – String to be written to the screen.

LIGHT

See SET LIGHT on page 37.

LISTEN

LISTEN <protocol> SOCKET <socket number> PORT <protocol port number>

The listen command instructs the Ethernet port to use a socket to listen for
a particular protocol on a given port number. Presently only the TCP
protocol is supported.

Example: LISTEN TCP SOCKET mysock PORT 502

Common TCP port numbers are shown in Table 3-3.

UCM2 Programming Manual Manual 3 UCM2 Language Statements 31

1. Internet Protocols are available as Requests For Comment (RFCs). They are available on
the Internet via HTTP: http://www.rfceditor.org

2. The Modbus/TCP specification is available http://www.modicon.com/openmbus/

MOVE

Reserved instruction for a special NR&D motion control application.
Must not be used in user application.

MULTIDROP

See SET MULTIDROP on page 38.

NICE

The nice command

NICE [0-5]

will be used to set a thread's priority:

Nice Value Run Ratio Mask

0 (fastest) 1:1 0

1 1:2 1

2 1:4 3

3 1:8 7

4 1:16 F

5 1:32 1F

6 (slowest) 1:64 3F
The user code thread switcher will determine whether each thread should be
executed by maintaining a counter of application passes:

if((PassCount ^ Threadnum) & Mask)) == 0 then run thread

32 UCM2 Language Statements 3 UCM2 Programming Manual Manual

Table 3-3: Well Known TCP Port Numbers

Well Known Port
Number

TCP Protocol Associated RFC1

21 FTP 959

23 TELNET 854

25 SMTP 821

80 WEB Server (HTTP) 2616

110 POP3 1939

502 Modbus/TCP N/A2

http://www.rfceditor.org/

This mechanism will make it so that if 8 consecutive threads are all set NICE 3
(to run 1/8 of the time) they will each run on *consecutive* application passes,
thereby spreading the CPU load.

Each thread will start with a niceness of 0, and may “renice” at any time, so that a
thread might be very nice while waiting on a TCP connection, then renice itself to
1 to serve up a web page before renicing itself again to wait for next connection.

NOTE: Thread 1 will always have a niceness of zero, regardless what is chosen
by the user.

ON CHANGE

ON CHANGE <variable> GOTO <label>

ON CHANGE <variable> RETURN

ON CHANGE <variable> & <expr> GOTO <label>

ON CHANGE <variable> & <expr> RETURN

The ON CHANGE statement functions within a WAIT loop (like an ON
RECEIVE or ON TIMEOUT), and performs the GOTO or RETURN
depending upon the result of the value of <variable>. When the value in
<variable> is modified by another source, the ON CHANGE statement is
performed.

ON <expression>

ON <expression> GOTO

ON <expression> RETURN

When the expression evaluates TRUE the wait loop is exited and flow
proceeds to the GOTO or RETURN.

ON RECEIVE KEYPAD x

The keypad appears to the UCM code as a port named KEYPAD. To
receive keypresses from the keypad, use:

ON RECEIVE KEYPAD "U" goto User_Pressed_Up

ON RECEIVE KEYPAD "D" goto User_Pressed_Down

ON RECEIVE KEYPAD "L" goto User_Pressed_Left

ON RECEIVE KEYPAD "R" goto User_Pressed_Right

ON RECEIVE KEYPAD "E" goto User_Pressed_Enter

ON RECEIVE KEYPAD "B" goto Backlight_Timed_Out

UCM2 Programming Manual Manual 3 UCM2 Language Statements 33

ON RECEIVE PORT x

ON RECEIVE SOCKET x

ON RECEIVE port 1 <message description> GOTO <label>

ON RECEIVE socket <socket name> <message description> GOTO <label>

ON RECEIVE port 2 <message description> RETURN

ON RECEIVE SOCKET <socket name> <message description> RETURN

The ON RECEIVE statement functions within a WAIT loop and performs
the GOTO or RETURN depending upon whether the incoming string
exactly matches the <message description>.

ON TIMEOUT

ON TIMEOUT <expr> GOTO <label>

ON TIMEOUT <expr> RETURN

The ON TIMEOUT statement functions within a WAIT loop (like an ON
RECEIVE or ON CHANGE), and performs the GOTO or RETURN
depending upon the elapsed time between incoming characters on the
port. The result of the <expr> must fall within the range 0 to FFFF hex.
Like the DELAY function, the ON TIMEOUT <expr> waits for a period
of time equal to <expr> times 1mS.

PARITY

See SET PARITY on page 39.

READ FILE

READ FILE <file number> OFFSET <offset value> <variable,variable,...>

The READ FILE statement allows a UCM2 program to read memory
from the 6x file areas of the UCM2 to the user memory area. The <file
number> is an expression which evaluates a number in Table 3-4.

The <offset value> is an expression which evaluates to the byte location
for the start of the read.

34 UCM2 Language Statements 3 UCM2 Programming Manual Manual

REPEAT...UNTIL

REPEAT

program statements

UNTIL <logical>

The REPEAT statement starts a loop based upon the evaluation of the
<logical> condition located in the UNTIL statement. The loop will only
be performed as long as the <logical> is FALSE. When the <logical> is
TRUE, program execution jumps to the statement following the UNTIL.

Note: The program statements will execute at least once regardless of the
condition of <logical>. This is different than the WHILE...WEND or
FOR...NEXT loops which only execute while the <logical> is TRUE, and
will not execute the program statements within their boundaries if the
<logical> is FALSE.

RETURN

See GOSUB...RETURN on page 29.

SET

The SET statement allows the initialization of the UCM2 for the
following parameters: Baud rate, Capitalization of incoming characters,

UCM2 Programming Manual Manual 3 UCM2 Language Statements 35

Table 3-4: UCM2 Internal File List

File Number
(dec)

File Number
(hex)

Memory Description Memory Size

256 100 Application Code Space 2Mb bytes

384 180 Application Variable Space 8Mb bytes

768 300 Application Variable Space

Provided for backward compatibility

1Mb bytes

1024 400 Application Variable Space

Provided for backward compatibility

1Mb bytes

1281 501 PPP Configuration, Port 1 1038 bytes

1282 502 PPP Configuration, Port 2 1038 bytes

1536 600 Statistics 384 bytes

2560 A00 Flash Block 1 7*8K bytes

Data bits, Parity, Stop bits, and Debug mode. SET must be followed by
the serial port number for the action to take place.

SET PORT x BAUD <const>

The SET BAUD statement sets the baud rate of the port for the value.
Any decimal value may be chosen for the baud rate. Example: SET PORT
1 BAUD 9600

SET PORT x CAPITALIZE <const>

SET SOCKET x CAPITALIZE <const>

The SET CAPITALIZE statement performs a translation on incoming
ASCII alphabet characters from the lower case to the upper case.
Example: SET PORT 2 CAPITALIZE TRUE or SET PORT 1
CAPITALIZE FALSE.

SET PORT x CTS <const>

The SET CTS statement sets the operation of the CTS pin on the RS-232
port. Possible values are

CTS ON The is the normal mode of CTS where CTS must be asserted to
allow the serial port to transmit.

CTS OFF Allows the use of the CTS pin to be independently monitored
for its state while the serial port is allowed to transmit regardless of the
state of CTS.

This operation is very useful in modem applications where CTS is wired
to DCD on the modem so the UCM2 can tell if the modem has carrier.

SET PORT x DATA <const>

The SET DATA statement sets the number of data bits for the operation of
the port. Valid range is 5,6,7, or 8 bits. Example: SET PORT 1 DATA 8

SET DEBUG <const>

The SET DEBUG statement determines the operation of the UCM2 port
in the event of a run time error. If SET DEBUG TRUE is used, the UCM2
program will halt upon a run time error and display the error number and
line number in the appropriate registers. If SET DEBUG FALSE is used,
the UCM2 program will halt upon a run time error and immediately
restart the program from the beginning.

SET PORT x DUPLEX <const>

The SET DUPLEX statement determines the operation of the port’s
receiver. With DUPLEX HALF, the receiver is only turned on when the
port is not transmitting. With DUPLEX FULL, the receiver is always on.
DUPLEX HALF should is used in 2-wire applications.

36 UCM2 Language Statements 3 UCM2 Programming Manual Manual

SET LIGHT <exp> <const>

The SET LIGHT statement is used to determine the state of the 2
indicator lights placed behind the LCD screen. SET LIGHT 1 ON turns
on the light while SET LIGHT 1 OFF turns off the light. See also
TOGGLE LIGHT on page 41.

SET MODE <const>

The SET MODE statement determines the operating mode of the port.
Valid entries are UCM, RTU, SYMAX, RNIM, and PPP.

UCM mode allows the use of raw TRANSMIT and RECEIVE statements
to communicate with the external device. Example: TRANSMIT PORT 1
"Example string"

RTU mode gives the UCM2 more automatic control of the TRANSMIT
and RECEIVE statements. This mode lets the UCM2 assume that the
communication will be Modbus RTU. The programmer will create a
Modbus packet in a byte array, then hand the UCM2 a length and the
name of the array. During TRANSMIT, the UCM2 will calculate and
append the checksum to the end of the packet. During RECEIVE, the
UCM2 will watch for the 3.5 character timeout, then verify the checksum.
The UCM2 will then replace the data in the array with the new data from
the reply.

DECLARE UNSIGNED BYTE CMD[100]

DECLARE WORD CMDLEN

...

TRANSMIT PORT 1 WORD(CMDLEN):RAW(CMD,CMLEN)

ON RECEIVE PORT 1 WORD(CMDLEN):RAW(CMD,CMLEN)
GOTO <variable>

SYMAX mode works on the same principle as RTU mode. The UCM2
will assume that the following communication is SY/MAX, and will
handle checksums, ACK’s, DLE escapes, etc. , involved in SY/MAX
communications. During TRANSMIT, the programmer will hand the
UCM2 the length of the SY/MAX packet data, the SY/MAX route
escaped by xFF, and the SY/MAX packet data. During RECEIVE, the
UCM2 will hand the programmer, the length of the reply, the route
escaped by xFF, and the SY/MAX reply data.

DECLARE STRING ROUTE[16], REPLYDATA[200]

DECLARE WORD REMOTE, COUNT, REPLYLEN

...

TRANSMIT PORT 1 WORD(6):RAW(ROUTE,LENGTH(ROUTE)):
"\FF":"\00\03":WORD(REMOTE):WORD(COUNT)

UCM2 Programming Manual Manual 3 UCM2 Language Statements 37

ON RECEIVE PORT 1 WORD(REPLYLEN):"\11":RAW(ROUTE,4):
"\FF" : "\86\03":WORD((REMOTE)):RAW(REPLYDATA,REPLYLEN4)
GOTO <variable>

RNIM mode is nearly identical to SYMAX mode. The only differences
are the addition of a Network

ID, transaction number, and a drop before the route.

DECLARE STRING ROUTE[16], REPLYDATA[200]

DECLARE WORD DROP, TRANSNUM, REMOTE, COUNT,
REPLYLEN

...

TRANSMIT PORT 1 WORD(6):BYTE(DROP):
BYTE(TRANSNUM) :"\00":RAW(ROUTE,LENGTH(ROUTE)):"\FF":"\
00\03":WORD(REMOTE):WORD(COUNT)

ON RECEIVE PORT 1 WORD(REPLYLEN):"\11":
BYTE(TRANSNUM): RAW(ROUTE,4):"\FF":"\86\03":
WORD((REMOTE)):RAW(REPLYDATA,REPLYLEN4) GOTO
<variable>

PPP Mode allows the UCM2 to use the serial port for TCP/IP
communication using the PPP protocol.

SET SOCKET <socket> NAGLE <const>

The Set Socket Nagle statement controls how data is sent out a TCP/IP
connection. In a socket with NAGLE OFF, every TRANSMIT SOCKET
command will create its own Ethernet packet. In a socket with NAGLE
ON (The default state), data sent out the socket is buffered as necessary
by the UCM2, which results in larger packets and better throughput,
especially for applications such as a Telnet server or a WWW server.

SET PORT x MULTIDROP <const>

The SET MULTIDROP statement controls the operation of the port’s
transmitter. With MULTIDROP TRUE, the transmitter is only on while
transmitting. With MULTIDROP FALSE, the transmitter is always on.

SET PORT x RTS <const>

The SET RTS statement sets the operation of the RTS pin on the RS-232
port. Possible values are:

RTS ON - Forces RTS on continuously

RTS OFF – Forces RTS off continuously

RTS AUTO – Allows RTS to behave in normal Push-to-Talk operation

38 UCM2 Language Statements 3 UCM2 Programming Manual Manual

SET PORT x DATA <const>

The SET DATA statement sets the number of data bits for the operation of
the port. Valid range is 5,6,7, or 8 bits. Example: SET PORT 1 DATA 8

SET PORT x PARITY <const>

The SET PARITY statement determines the parity of the port. Valid
entries are EVEN, ODD, or NONE. Example: SET PORT 1 PARITY
EVEN

SET PORT x PPPUSERNAME <string const|string variable>

The SET PPPUSERNAME statement determines username for the PPP
connection between the UCM2 and the PPP client or server.

SET PORT x PPPPASSWORD <string const|string variable>

The SET PORT x PPPPASSWORD statement determines password for
the PPP connection between the UCM2 and the PPP client or server.

SET PORT x PPPHANGUP

The SET PORT x PPPHANGUP statement causes a gracefull disconnect
between the PPP connection of the UCM2 and the client/server.

SET PORT x STOP <const>

The SET STOP statement determines the number of stop bits for the port.
Valid entries are 1 or 2. Example: SET PORT 2 STOP 2

SET (bit)

SET <variable>.<const> or SET <variable>.(<expr>)

The SET statement sets a single bit of a variable to ONE. The bit number
<const> or <expr> must evaluate within the range off 116 for OUTPUT
registers, 07 for bytes, 015 for words, and 031 for long variables. To clear
a single bit of a register to be set to one use the CLEAR statement.

SOCKETSTATE

ON SOCKETSTATE (<socket>).<const> GOTO <label>

ON SOCKETSTATE (<socket>).<const> RETURN

IF SOCKETSTATE (<socket>).<const> THEN <expression>

The SOCKETSTATE statement allows the Application to make decisions
based on the status of a socket that was initiated by a CONNECT
statement. Status bits are set for the SOCKETSTATE of each declared
socket. Bit 15 indicates when a socket is open. Bit 14 indicates that the
socket is listening. These are the most useful bits.

UCM2 Programming Manual Manual 3 UCM2 Language Statements 39

STOP

The STOP statement causes the UCM2 program to halt upon its
execution. The program may be restarted by clearing and then setting the
command bit for the program.

STOP (BITS)

See SET STOP on page 39.

SWITCH...CASE...ENDSWITCH

SWITCH CASE<expr><statement(s)> [CASE <expr> <statement(s) ...]
ENDSWITCH

The SWITCH...CASE...ENDSWITCH construct allows many mutually
exclusive conditional statements or routines to be written without nesting
a lot of IF...ELSE...ENDIF statements. Only one of the CASEs contained
within the SWITCH...ENDSWITCH construct will be executed. For
Example:

SWITCH

CASE X=2

Y = 2 * Y {Will execute only if X = 2}

CASE X < 5

Y = X * 5 {Will execute only if X < 5, but not if X
= 2}

CASE Y > 10 {Logical expressions can operate on
different variables}

Y = 0

CASE TRUE {Comparable to default: in C}

Y = 99

X = 0 {These will execute only if all other CASEs
fail to match}

ENDSWITCH

Program execution will continue with the instruction immediately after
the ENDSWITCH statement, whether any CASE matches or not.

TOGGLE

TOGGLE <variable>.<const> or TOGGLE <variable>.(<expr>)

The TOGGLE statement changes teh state of a single bit of a variable.
The bit number <const> or <expr> must evaluate within the range off 116
for OUTPUT registers, 07 for bytes, 015 for words, and 031 for long
variables.

40 UCM2 Language Statements 3 UCM2 Programming Manual Manual

TOGGLE LIGHT

TOGGLE LIGHT <expr>

The TOGGLE LIGHT statement is used to change the state of the 10 indicator
lights for the UCM2. See also the SET LIGHT command on page 37.

TRANSMIT

TRANSMIT PORT x <message description>

TRANSMIT SOCKET s <message description>

The TRANSMIT statement allows serial (or Ethernet) communication to
be emitted from the port. (socket) The exact string evaluated from the
<message description> will be emitted.

WAIT

The WAIT statement follows a group of ON RECEIVE, ON CHANGE,
ON <expression>, and ON TIMEOUT statements. The WAIT statement
causes a loop to occur until one of the ON RECEIVE, ON CHANGE, or
ON TIMEOUT conditions has occurred. Program flow will be directed by
the ON RECEIVE, CHANGE, <expression>, or TIMEOUT statement.

WHILE...WEND

WHILE <logical>

program statements

WEND

The WHILE statement starts a loop based upon the evaluation of the
<logical> condition. The loop will only be performed as long as the
<logical> is TRUE. When the <logical> is FALSE, program execution
jumps to the statement following the WEND.

WRITE FILE

WRITE FILE <file number> OFFSET <offset value> <variable,variable,...>

The WRITE FILE statement allows a UCM2 program to write memory
from the user memory area to memory in the 6x file areas of the UCM2
The <file number> is an expression which evaluates a number in Table 3-
5.

UCM2 Programming Manual Manual 3 UCM2 Language Statements 41

The <offset> is an expression which evaluates to the byte location for the
start of the read.

42 UCM2 Language Statements 3 UCM2 Programming Manual Manual

Table 3-5: UCM2 Internal File List

File Number
(dec)

File Number
(hex)

Memory Description Memory Size

256 100 Application Code Space 2Mb bytes

384 180 Application Variable Space 8Mb bytes

768 300 Application Variable Space

Provided for backward compatibility

1Mb bytes

1024 400 Application Variable Space

Provided for backward compatibility

1Mb bytes

1281 501 PPP Configuration, Port 1 1038 bytes

1282 502 PPP Configuration, Port 2 1038 bytes

1536 600 Statistics 384 bytes

2560 A00 Flash Block 1 7*8K bytes

4 UCM2 Language Functions
The UCM2 language includes a variety of commonly used functions to facilitate message
generation and reception, and other program flow areas.

Checksum Functions

CRC

Form: CRC(<expr>,<expr>,<expr>)

The CRC function calculates the Cyclical Redundancy Check (CCITT standard)
upon a message. The first <expr> is the starting index. This value is number of the
character in the message where the CRC16 is to start. The second <expr> is the
ending index, usually the $ or $-1 location. The final <expr> is the initial value
for the checksum, usually a 0 or -1.

CRC16

Form: CRC16(<expr>,<expr>,<expr>)

The CRC16 function calculates the Cyclical Redundancy Check upon a message.
The first <expr> is the starting index. This value is number of the character in the
message where the CRC16 is to start. The second <expr> is the ending index,
usually the $ or $-1 location. The final <expr> is the initial value for the
checksum, usually a 0 or -1.

The CRC16 is a variation of the CCITT standard CRC and is sometimes called a
CRC. The MODBUS RTU protocol uses the CRC16.

CRCAB

Form: CRCAB(<expr>,<expr>,<expr>)

The CRCAB function calculates the CRC16 Check upon a message while leaving
out the $-2 character. The first <expr> is the starting index. This value is the
number of the character in the message where the CRC16 is to start. The second
<expr> is the ending index, usually the $ location. The final <expr> is the initial
value for the checksum, usually a 0.

The CRCAB is a variation of the CRC16 customized for use with the Allen-
Bradley protocols.

UCM2 Programming Manual Manual 43

CRCBOB

Form: CRCBOB(<expr>,<expr>,<expr>)

The CRCBOB function calculates the CRC16 Check upon a message
while leaving out the $-2 character. The first <expr> is the starting index.
This value is the number of the character in the message where the
CRC16 is to start. The second <expr> is the ending index, usually the $
location. The final <expr> is the initial value for the checksum, usually a-
1.

The CRCAB is a variation of the CRC16 customized for use with
BinMaster Smartbob II’s.

CRCDNP

Form: CRCDNP(<expr>,<expr>,<expr>)

The CRCDNP function calculates the CRC16 Check upon a message
while leaving out the $-1 character. The first <expr> is the starting index.
This value is the number of the character in the message where the
CRC16 is to start. The second <expr> is the ending index, usually the $
location. The final <expr> is the initial value for the checksum, usually a
0.

The CRCAB is a variation of the CRC16 customized for use with the
DNP 3.00 protocol.

LRC

Form: LRC(<expr>,<expr>,<expr>)

The LRC function calculates the Longitudinal Redundancy Check upon a
message. The first <expr> is the starting index. This value is number of
the character in the message where the LRC is to start. The second <expr>
is the ending index, usually the $ or $-1 location. The final <expr> is the
initial value for the checksum, usually a 0 or -1.

The LRC operates upon each byte of the message and the result of the
function is a byte.

LRCW

Form: LRCW(<expr>,<expr>,<expr>)

The LRCW function calculates the Longitudinal Redundancy Check upon
a message. The first <expr> is the starting index. This value is number of
the character in the message where the LRCW is to start. The second
<expr> is the ending index, usually the $ or $-1 location. The final <expr>
is the initial value for the checksum, usually a 0 or -1.

The LRCW operates upon each word of the message and the result of the
function is a word.

44 UCM2 Language Functions 4 UCM2 Programming Manual Manual

SUM

Form: SUM(<expr>,<expr>,<expr>)

The SUM function calculates the straight hex sum of a message. The first
<expr> is the starting index. This value is number of the character in the
message where the SUM is to start. The second <expr> is the ending
index, usually the $ or $-1 location. The final <expr> is the initial value
for the checksum, usually a 0 or -1.

The SUM function operates upon each byte of the message and returns a
byte.

SUMW

Form: SUMW(<expr>,<expr>,<expr>)

The SUMW function calculates the straight hex sum of a message. The
first <expr> is the starting index. This value is number of the character in
the message where the SUMW is to start. The second <expr> is the
ending index, usually the $ or $-1 location. The final <expr> is the initial
value for the checksum, usually a 0 or -1.

The SUMW function operates upon each word of the message and returns
a word.

Message Description Functions

BCD Binary - Coded Decimal conversion

Usual Format: BCD(Register location, byte count) or

BCD(Register location, VARIABLE) or

BCD(Register location, VARIABLE, Register location)

Valid characters: hexadecimal 00 through 09, 10 through 19 ... 90
through 99.

Transmitting: Converts an expression into its decimal representation,
breaks the decimal number into pairs of digits and then translates each
pair of digits into its BCD character.

TRANSMIT format: BCD(<expr>,<expr>)

Receiving: Converts BCD characters into pairs of decimal digits,
assembles the pairs into a 16 bit decimal number and then compares the
number to an expression or places the number into an UCM2 register.

ON RECEIVE formats: BCD(<variable>,<expr>) or
BCD((<expr>),<expr>)

Note: The UCM2 port must be set for 8 bit for BCD to work correctly.

UCM2 Programming Manual Manual 4 UCM2 Language Functions 45

BYTE Single - (lower) byte conversion

Usual Format: BYTE(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its hexadecimal representation
and transmits the lower 8 bits as a hexadecimal character.

TRANSMIT format: BYTE(<expr>)

Receiving: Interprets hexadecimal characters as 8bit hexadecimal
numbers and then compares the numbers to an expression or places the
numbers into the lower byte of UCM2 registers and zeros the upper byte
of these registers.

ON RECEIVE formats: BYTE(<variable>) or BYTE((<expr>))

Note: If the UCM2 port is set to 7 bit then bit 8 will always be zero.

DEC Decimal - conversion

Usual Format: DEC(Register location, byte count) or

DEC(Register location, VARIABLE) or

DEC(Register location, VARIABLE, Register location)

Valid characters: ASCII + (plus sign), -(minus sign) and 0 through 9

Transmitting: Converts an expression into its signed decimal
representation, breaks the signed decimal number into its sign and its
digits and then translates each digit into its ASCII character.

TRANSMIT format: DEC(<expr>,<expr>)

After the significant digits the UCM2 pads the front of the string with
ASCII zeros. Does not transmit the plus (+) sign for positive numbers but
does transmit a minus sign (-) on negative numbers.

Receiving: Converts ASCII characters into decimal digits with a sign,
assembles the sign and digits into a 16 bit decimal number and then
compares the number to an expression or places the number into an
UCM2 register.

ON RECEIVE formats: DEC(<variable>,<expr>) or
DEC((<expr>),<expr>)

Total number of registers that can be affected: 1

Positive numbers can have a plus (+) sign preceding them but it is not
required. Negative numbers must have a minus (-) sign preceding them.

HEX Hexadecimal - conversion

Usual Format: HEX(Register location, byte count) or

HEX(Register location, VARIABLE) or

46 UCM2 Language Functions 4 UCM2 Programming Manual Manual

HEX(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and A through F

Transmitting: Converts an expression into its hexadecimal
representation, breaks the hexadecimal number into its digits and then
translates each hex digit into its ASCII character.

TRANSMIT format: HEX(<expr>,<expr>)

Maximum number of characters that can be sent:

Receiving: Translates ASCII characters into hexadecimal digits,
assembles the digits into 16 bit hex numbers and then compares the
numbers to an expression or places the numbers into UCM2 registers.

ON RECEIVE formats: HEX(<variable>,<expr>) or
HEX((<expr>),<expr>)

Total number of registers that can be affected: 16 (64 characters)

HEXLC Lower - Case Hexadecimal conversion

Usual Format: HEXLC(Register location, byte count) or

HEXLC(Register location, VARIABLE) or

HEXLC(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and a through f

Transmitting: Converts an expression into its hexadecimal
representation, breaks the hexadecimal number into its digits and then
translates each hex digit into its ASCII character. Functions the same as
HEX but accepts lower case characters a through f.

TRANSMIT format: HEXLC(<expr>,<expr>)

Maximum number of characters that can be sent: 4

Receiving: Translates ASCII characters into hexadecimal digits,
assembles the digits into 16 bit hex numbers and then compares the
numbers to an expression or places the numbers into UCM2 registers.
Transmits the hex alpha characters as lower case a through f.

ON RECEIVE formats: HEXLC(<variable>,<expr>) or

HEXLC((<expr>),<expr>)

Total number of registers that can be affected: 1 (4 characters)

IDEC conversion

Usual Format: IDEC(Register location, byte count) or

IDEC(Register location, VARIABLE) or

IDEC(Register location, VARIABLE, Register location)

UCM2 Programming Manual Manual 4 UCM2 Language Functions 47

Valid characters: ASCII 0 through 9 and : ; < = > ?

Transmitting: Converts an expression into its hexadecimal
representation, breaks the hexadecimal number into its digits and then
translates each hex digit into its pseudo-ASCII character. In pseudo-
ASCII, hex digits 0 through 9 are there normal ASCII characters while
hex digits A through F are replaced by the hex characters 3A through 3F
which are the ASCII characters : ; < = > and ?.

TRANSMIT format: IDEC(<expr>,<expr>)

Receiving: Converts pseudo-ASCII characters into hexadecimal digits,
assembles the digits into 16 bit hexadecimal numbers and then compares
the numbers to an expression or places the numbers into UCM2 registers.

ON RECEIVE formats: IDEC(<variable>,<expr>) or

IDEC((<expr>),<expr>)

Note: This is the format that the IDEC processors and other devices use to
pass register values. If communicating to an IDEC processor, a Square D
Model 50 or Micro-1, or any other devices that use this pseudo-ASCII
protocol this is a useful function.

LONG

Usual Format: LONG(Variable name)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 32-bit hexadecimal
representation, translates the 32-bit number into four 8-bit hexadecimal
numbers and transmits the bytes in order of descending significance. If
the variable VAR of type long contains 0x12345678, the four bytes would
be transmitted: x12, x34, x56, x78.

TRANSMIT format: LONG(<expr>)

Receiving: Interprets four hexadecimal characters as four 8-bit
hexadecimal numbers, assembles the four 8-bit numbers into a 32-bit
number, first number the high byte, the second number in the second most
significant byte, and the fourth number the low byte, and then compares
the number to an expression or places the number into an UCM2 variable.

ON RECEIVE formats: LONG(<variable>) or LONG((<expr>))

OCT Octal - conversion

Usual Format: OCT(Register location, byte count)

Valid characters: ASCII 0 through 7

Transmitting: Converts an expression into its octal representation, breaks
the octal number into its digits and then translates each digit into its
ASCII character.

48 UCM2 Language Functions 4 UCM2 Programming Manual Manual

TRANSMIT format: OCT(<expr>,<expr>)

Receiving: Converts ASCII characters into octal representation.

ON RECEIVE formats: OCT(<variable>,<expr>) or

OCT((<expr>),<expr>)

RAW – Raw register conversion

Usual Format: RAW(Register location, byte count) or

RAW(Register location, VARIABLE) or

RAW(Register location, VARIABLE, Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts registers into their hexadecimal representation
and translates each 16-bit hexadecimal number into a pair of 8-bit
hexadecimal characters.

TRANSMIT format: RAW(<variable>,<expr>)

Receiving: Interprets hexadecimal characters as 8-bit hexadecimal
numbers, assembles each pair of 8-bit numbers into a 16-bit hexadecimal
number, high byte then low byte, and then compares the numbers to an
expression or places the numbers into UCM2 registers.

ON RECEIVE formats: RAW(<variable>,<expr>) or

RAW((<expr>),<expr>)

Note: If the UCM2 port is set to 7-bit then bit 8 and bit 16 will always be
0. RAW is an expanded version of SY/MAX packed ASCII and can be
used to transmit and receive packed ASCII characters as well as 8-bit
characters.

RWORD

Usual Format: RWORD(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 16-bit hexadecimal
representation, translates the 16-bit number into a pair of 8-bit
hexadecimal numbers and transmits the lower eight bits and then the
upper eight bits as hexadecimal characters.

TRANSMIT format: RWORD(<expr>)

Receiving: Interprets two hexadecimal characters as two 8-bit
hexadecimal numbers, assembles the two 8-bit numbers into a 16-bit
number, first number low byte and second number high byte, and then
compares the number to an expression or places the number into an
UCM2 register.

ON RECEIVE formats: RWORD(<variable>) or RWORD((<expr>))

UCM2 Programming Manual Manual 4 UCM2 Language Functions 49

Note: Like WORD but in the reverse order, low byte then high byte.

TON – Translate on

The commands TON and TOFF work with the TRANSLATE command.
The TRANSLATE command defines a string that is to be translated into
another string. This is used when a character has reserved meaning but
could also be used in the translation of data. Up to 8 TRANSLATE strings
can be contained in an UCM2 program.

An example: the escape character (hex 1B) could be used to interrupt a
transmission but hex 1B might also be valid data. When the remote
process wants to interrupt transmission it sends a single hex 1B. But when
the remote process wants to send data containing hex 1B it sends 1B1B
and the UCM2 is responsible for interpreting two hex 1Bs as a single 1B
instead of as an escape. In this case the translate command would be:

TRANSLATE 1:"\1B\1B" = "\1B"

and the command for receiving data that might contain a hex 1B:

ON RECEIVE TON(1):RAW(STRINGVAR,15):TOFF(1)

The TON command turns on translation during an ON RECEIVE or
TRANSMIT. The format for turning translation on is TON(<expr>) where
<expr> is the translation number and must evaluate to be between 1 and
8. The TON is usually followed by a TOFF.

TOFF – Translate off

The TOFF command turns off translation during an ON RECEIVE or
TRANSMIT. The format for turning translation off is TOFF(<expr>)
where <expr> is the translation number and must evaluate to be between
1 and 8.

UNS – Unsigned decimal conversion

Usual Format: UNS(Register location, byte count) or

UNS(Register location, VARIABLE) or

UNS(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9

Transmitting: Converts an expression into its unsigned decimal
representation, breaks the unsigned decimal number into its digits and
then translates each digit into its ASCII character.

TRANSMIT format: UNS(<expr>,<expr>)

Receiving: Converts ASCII characters into decimal digits, assembles the
digits into a 16 bit unsigned decimal number and then compares the
number to an expression or places the number into an UCM2 register.

50 UCM2 Language Functions 4 UCM2 Programming Manual Manual

ON RECEIVE formats: UNS(<variable>,<expr>) or
UNS((<expr>),<expr>)

Total number of registers that can be affected: 1

WORD

Usual Format: WORD(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 16-bit hexadecimal
representation, translates the 16-bit number into a pair of 8-bit
hexadecimal numbers and transmits the upper eight bits and then the
lower eight bits as hexadecimal characters.

TRANSMIT format: WORD(<expr>)

Receiving: Interprets two hexadecimal characters as two 8-bit
hexadecimal numbers, assembles the two 8-bit numbers into a 16-bit
number, first number the high byte and second number the low byte, and
then compares the number to an expression or places the number into an
UCM2 register.

ON RECEIVE formats: WORD(<variable>) or WORD((<expr>))

Note: Like RWORD but always high byte then low byte. Also like
RAW(<variable>,2).

Receive Buffer Functions

WAITCHAR(<receive_buffer_variable>)

bytevar = WaitChar(port 1)

Pulls one byte from the receive buffer of port 1 and place it in bytevar.
This command will block if nothing to Rx. Returns -1 if socket closed or
closing

GETCHAR(<receive_buffer_variable>)

intvar = GetChar(socket s)

Pulls one byte from the receive buffer of socket s and place it in intvar.
This will return -1 if nothing to Rx.

Note: Since GetChar() can return a -1 in case of nothing to receive, you'll
want to put the result into a signed word or long variable. If placed in a
byte variable, you won't be able to distinguish -1 from 0xFF.

COUNTCHAR(<receive_buffer_variable>)

intvar = CountChar(port 2)

Returns number of bytes in Rx queue and place it in intvar.

UCM2 Programming Manual Manual 4 UCM2 Language Functions 51

Other Functions

APPLICATION

The APPLICATION internal variable returns a value of 1 or 2, indicating
which application area the program is running in. A program which is
loaded into application area 2 of a UCM2 will read this variable as 2.

CHANGED

Format: CHANGED(<variable>) or CHANGED(<variable> & <expr>)

The CHANGED function provides a boolean result dependent upon
whether the evaluated register or mask of the register has been altered
from the last operation of this function. The first occurrence of the
CHANGED function will result in a FALSE regardless of the state of the
evaluated register.

The CHANGED function is used in any place referred to as <logical>,
such as:

IF CHANGED(OUTPUT[56]) THEN GOTO reply

The CHANGED function is similar to the ON CHANGE statement, but
the CHANGED function allows program execution to continue running
instead of pausing to wait for the change to occur.

MAX

Format: MAX(<expr>,<expr>)

The MAX function provides a result of the <expr> which evaluates to the
larger of the two expressions.

MIN

Format: MIN(<expr>,<expr>)

The MIN function provides a result of the <expr> which evaluates to the
smaller of the two expressions.

SWAP

Format: SWAP(<expr>)

The SWAP function reverses the byte order of the result of the <expr>. If
OUTPUT[4] = xABCD

then SWAP(OUTPUT[4]) would bring the result xCDAB.

THREAD

The THREAD variable returns a value for the thread number where the
variable is called. Valid results are 1-8 inclusive.

52 UCM2 Language Functions 4 UCM2 Programming Manual Manual

RTS

RTS is a variable which may be used to control the state of the Request to
Send line for a UCM2 port. SET PORT 1 RTS ON will assert the RTS
line. SET PORT 2 RTS OFF will negate the RTS line. SET PORT 1 RTS
AUTO will force RTS to be in "push-to-talk" mode.

CTSx

CTSx is a variable which gives the current state of Clear to Send on the
UCM2 port. CTS1 provides the state for port 1 while CTS2 is for port 2.
IF CTSx = TRUE then CTS is asserted by the external device. If CTSx =
FALSE then CTS is negated.

UCM2 Programming Manual Manual 4 UCM2 Language Functions 53

5 Examples

TRANSMIT message function with register references

In the following TRANSMIT examples the following initial conditions are
assumed:

TRANSMIT HEX

Command: TRANSMIT HEX(OUTPUT[23],4)

ASCII Characters transmitted: A1B2

Decimal values: 65 49 66 50

Hex values: 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],2)

ASCII Characters transmitted: B2

Decimal values: 66 50

Hex values: 42 32

Command: TRANSMIT HEX(OUTPUT[23],8)

ASCII Characters transmitted: 0000A1B2

Decimal values: 48 48 48 48 65 49 66 50

Hex values: 30 30 30 30 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE)

ASCII Characters transmitted: A1B2

UCM2 Programming Manual Manual 55

UCM2
Register

Decimal Signed
Decima
l

Hex Octal Binary

OUTPUT[23] 41394 24142 A1B2 120662 1010 0001 1011 0010

OUTPUT[24] 20318 20318 4F5E 47536 0100 1111 0101 1110

Decimal values: 65 49 66 50

Hex values: 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE R[600])

ASCII Characters transmitted: A1B2

Decimal values: 65 49 66 50

Hex values: 41 31 42 32

OUTPUT[600] would then equal 4.

TRANSMIT DEC

Command: TRANSMIT DEC(OUTPUT[23],6)

ASCII Characters transmitted: 24142

Decimal values: 45 50 52 49 52 50

Hex values: 2D 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],5)

ASCII Characters transmitted: 24142

Decimal values: 50 52 49 52 50

Hex values: 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],12)

ASCII Characters transmitted: 00000024142

Decimal values: 45 48 48 48 48 48 48 50 52 49 52 50

Hex values: 2D 30 30 30 30 30 30 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],VARIABLE)

ASCII Characters transmitted: 24142

Decimal values: 45 50 52 49 52 50

Hex values: 2D 32 34 31 34 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE
LENGTHVARIABLE)

ASCII Characters transmitted: 24142

Decimal values: 45 50 52 49 52 50

Hex values: 2D 32 34 31 34 32

R[600] would then equal 6.

TRANSMIT UNS

Command: TRANSMIT UNS(OUTPUT[23],5)

56 Examples 5 UCM2 Programming Manual Manual

ASCII Characters transmitted: 41394

Decimal values: 52 49 51 57 52

Hex values: 34 31 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],3)

ASCII Characters transmitted: 394

Decimal values: 51 57 52

Hex values: 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],8)

ASCII Characters transmitted: 00041394

Decimal values: 48 48 48 52 49 51 57 52

Hex values: 30 30 30 34 31 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],8)

ASCII Characters transmitted: 00041394

Decimal values: 48 48 48 52 49 51 57 52

Hex values: 30 30 30 34 31 33 39 34

TRANSMIT OCT

Command: TRANSMIT OCT(OUTPUT[23],6)

ASCII Characters transmitted: 120662

Decimal values: 49 50 48 54 54 50

Hex values: 31 32 30 36 36 32

Command: TRANSMIT OCT(OUTPUT[23],3)

ASCII Characters transmitted: 662

Decimal values: 54 54 50

Hex values: 36 36 32

Command: TRANSMIT OCT(OUTPUT[23], VARIABLE)

ASCII Characters transmitted: 120662

Decimal values: 49 50 48 54 54 50

Hex values: 31 32 30 36 36 32

Command: TRANSMIT OCT(OUTPUT[23], VARIABLE R[600])

ASCII Characters transmitted: 120662

Decimal values: 49 50 48 54 54 50

Hex values: 31 32 30 36 36 32

UCM2 Programming Manual Manual 5 Examples 57

R[600] would then equal 6.

TRANSMIT BCD

Command: TRANSMIT BCD(OUTPUT[23],3)

ASCII Characters transmitted: {not ASCII characters}

Decimal values: 4 19 148

Hex values: 04 13 94

Command: TRANSMIT BCD(OUTPUT[23],1)

ASCII Characters transmitted: {not ASCII character}

Decimal values: 148

Hex values: 94

Command: TRANSMIT BCD(OUTPUT[23],5)

ASCII Characters transmitted: {not ASCII characters}

Decimal values: 0 0 4 19 148

Hex values: 00 00 04 13 94

Command: TRANSMIT BCD(OUTPUT[23], VARIABLE)

ASCII Characters transmitted: {not ASCII characters}

Decimal values: 4 19 148

Hex values: 04 13 94

Command: TRANSMIT BCD(OUTPUT[23], VARIABLE
OUTPUT[600])

ASCII Characters transmitted: {not ASCII characters}

Decimal values: 4 19 148

Hex values: 04 13 94

OUTPUT[600] would then equal 3.

ON RECEIVE message functions with register references

In the following ON RECEIVE examples it assumed that a WAIT follows
immediately after the ON RECEIVE command, there are no other ON
RECEIVEs set up for the WAIT and the incoming string is the following
group of ASCII characters:

D876543F

Before the WAIT is executed, the following initial conditions are present:

58 Examples 5 UCM2 Programming Manual Manual

Several of the examples have remaining characters. The remaining
characters will be received by the UCM2 and buffered until the next ON
RECEIVE is reached by the program. This is not good programming
practice unless these characters are meant to be handled elsewhere in the
program. If they are not handled correctly, ON RECEIVEs later in the
program may give unexpected results.

ON RECEIVE HEX

Command: ON RECEIVE HEX(OUTPUT[23],4) RETURN

Results after WAIT:

Characters used: D876

Translated to: hex D876

Remaining characters: "543F"

Command: ON RECEIVE HEX(OUTPUT[23],8) RETURN

Results after WAIT:

Characters used: D876543F

Translated to: hex D876 and hex 543F

Note: Every character is used by this HEX function. The string was meant
for a statement similar to this one, in that it handles all of the characters.

UCM2 Programming Manual Manual 5 Examples 59

UCM2
Register

Hex Unsigned
Decimal

Decimal Octal Binary

OUTPUT[23] A1B2 41394 -24142 120662 1010 0001 1011 0010

OUTPUT[24] 03F5 1013 1013 1765 0000 0011 1111 0101

Hex Unsigned
Decimal

Decimal Binary

Register 23 D876 55414 -10122 1101 1000 0111 0110

Register 24 03F5 1013 1013 0000 0011 1111 1001

Hex Unsigned
Decimal

Decimal Binary

Register 23 D876 55414 -10122 1101 1000 0111 0110

Register 24 543F 21567 21567 1001 1000 0011 1111

Command: ON RECEIVE HEX(R[23],2) RETURN

Results after WAIT:

Characters used: D8

Translated to: hex D8

Remaining characters: "76543F"

ON RECEIVE DEC

Command: ON RECEIVE DEC(OUTPUT[23],4) RETURN

Results after WAIT:

Characters used: D8765

Translated to: decimal 8,765

Note: The first received character "D" is ignored by the DEC() function.
This is all right but if a D is always the leading character then a program
statement like ON RECEIVE "D":DEC(OUTPUT[23],4) may be better.

Remaining characters: "43F"

Command: ON RECEIVE DEC(OUTPUT[23],5) RETURN

Results after WAIT:

Characters used: D87654

Translated to: decimal 87,654%65,536 = 22,118

60 Examples 5 UCM2 Programming Manual Manual

Hex Unsigned
Decimal

Decimal Binary

Register 23 00D8 216 216 0000 0000 1101 1000

Register 24 03F5 1013 1013 0000 0011 1111 1001

Hex Unsigned
Decimal

Decimal Binary

Register 23 223D 8765 8765 0010 0010 0011 1101

Register 24 03F5 1013 1013 0000 0011 1111 1001

Note: The first "D" is ignored similar to the previous ON RECEIVE..
Remaining characters: "3F"

Command: ON RECEIVE DEC(OUTPUT[23],2) RETURN

Results after WAIT:

Characters used: D87

Translated to: decimal 87

Note: The "D" is ignored as above.

Remaining characters: "6543F"

ON RECEIVE UNS

Command: ON RECEIVE UNS(OUTPUT[23],4) RETURN

Results after WAIT:

Characters used: D8765

Translated to: unsigned decimal 8,765

Note: the first received character "D" is ignored by the UNS() function.
Remaining characters: "43F"

Command: ON RECEIVE UNS(OUTPUT[23],5) RETURN

Results after WAIT:

UCM2 Programming Manual Manual 5 Examples 61

Hex Unsigned
Decimal

Decimal Binary

Register 23 5666 22118 22118 0101 0110 0110 0110

Register 24 03F5 1013 1013 0000 0011 1111 0101

Hex Unsigned
Decimal

Decimal Binary

Register 23 0057 87 87 0000 0000 0101 0111

Register 24 03F5 1013 1013 0000 0011 1111 0101

Hex Unsigned
Decimal

Decimal Binary

Register 23 223D 8765 8765 0010 0010 0011 1101

Register 24 03F5 1013 1013 0000 0011 1111 0101

Characters used: D87654

Translated to: unsigned decimal 87,654%65,536 = 22,118

Note: The "D" is ignored. The next five characters "87654" do not make a
valid unsigned decimal number and so the UNS() function takes the
incoming number and does a modulus 65,536. In this case the result is
22,118.

Remaining characters: "3F"

Command: ON RECEIVE UNS(OUTPUT[23],2) RETURN

Results after WAIT:

Characters used: D87

Translated to: decimal 87

Note: The "D" is ignored.

Remaining characters: "6543F"

ON RECEIVE OCT

Command: ON RECEIVE OCT(R[23],5) RETURN

Results after WAIT:

Characters used: D876543

Translated to: octal 76543

62 Examples 5 UCM2 Programming Manual Manual

Hex Unsigned
Decimal

Decimal Binary

Register 23 5666 22118 22118 0101 0110 0110 0110

Register 24 03F5 1013 1013 0000 0011 1111 0101

Hex Unsigned
Decimal

Decimal Binary

Register 23 0057 87 87 0000 0000 0101 0111

Register 24 03F5 1013 1013 0000 0011 1111 0101

Note: The first two received characters "D8" are not octal digits and are
ignored by the OCT() function.

Remaining characters: "F"

Command: ON RECEIVE OCT(OUTPUT[23],2) RETURN

Results after WAIT:

Characters used: D876

Translated to: octal 76

Note: The "D" and the "8" are ignored.

Remaining characters: "543F"

Command: ON RECEIVE OCT(OUTPUT[23],6) RETURN

Results after WAIT:

Characters used: D876543F

Translated to: nothing

Note: Since "D", "8" and "F" are not valid octal characters they are lost by
the OCT command. Between the "8" and the "F" the octal characters
"76543" were received, which is only 5 characters instead of the 6
required by this ON RECEIVE. Since the next character "F" was not an
octal character the previous 5 characters are ignored as not matching 6

UCM2 Programming Manual Manual 5 Examples 63

Hex Unsigned
Decimal

Decimal Binary Octal

Register 23 7D63 32099 32099 0111 1101 0110 0011 076543

Register 24 03F5 1013 1013 0000 0011 1111 0101 001765

Hex Unsigned
Decimal

Decimal Binary Octal

Register 23 003E 62 62 0000 0000 0011 1110 000076

Register 24 03F5 1013 1013 0000 0011 1111 0101 001765

Hex Unsigned
Decimal

Decimal Binary Octal

Register 23 A1B2 41394 -24142 1010 0001 1011 0010 120662

Register 24 03F5 1013 1013 0000 0011 1111 0101 001765

octal characters in a row. So, not enough octal characters have been
transmitted for this command. If this command is used without an ON
TIMEOUT then the program will wait until 6 octal characters in a row are
sent before completing this ON RECEIVE. Also note that register 23 has
not yet changed.

Remaining characters: None – waiting for 6 octal characters in a row

ON RECEIVE BCD

Command: ON RECEIVE BCD(OUTPUT[23],2) RETURN

Results after WAIT:

Characters used: D8 (hexadecimal 44 and 38)

Translated to: decimal 4,438

Note: The first two received characters "D" and "8" are used by the
BCD() function. The "D" is a hex character 44 and the "8" is a hex
character 38 and so the unsigned decimal value is 4438.

Remaining characters: "76543F"

Command: ON RECEIVE BCD(OUTPUT[23],4) RETURN

Results after WAIT:

Characters used: D876 (hexadecimal 44 38 37 36)

Translated to: decimal 44,383,736 converted to 15,864

Note: Both register 23 were changed

Remaining characters: None

ON RECEIVE RAW

Command: ON RECEIVE RAW(OUTPUT[23],2) RETURN

64 Examples 5 UCM2 Programming Manual Manual

Hex Unsigned
Decimal

Decimal Binary

Register 23 1157 4438 4438 0001 0001 1001 1010

Register 24 03F5 1013 1013 0000 0011 1111 0101

Hex Unsigned
Decimal

Decimal Binary

Register 23 6AF8 15864 15864 0110 1010 1111 1000

Register 24 03F5 1013 1013 0000 0011 1111 0101

Results after WAIT:

Characters used: D8 (hexadecimal 44 38)

Translated to: hexadecimal 4438

Note: The "D" is a hex 44 and the "8" is a hex 38 so register 23 is now
4438

Remaining characters: "76543F"

Command: ON RECEIVE RAW(OUTPUT[23],1) RETURN

Results after WAIT:

Characters used: D (hexadecimal 44)

Translated to: hexadecimal 4400

Note: The RAW function places the first character into the upper bits of
the register and zeros the rest of the bits.

Remaining characters: "876543F"

Command: ON RECEIVE RAW(OUTPUT[23],4) RETURN

Results after WAIT:

Characters used: D876 (hexadecimal 44 38 37 36)

Translated to: hexadecimal 4438 and 3736

Note: RAW changed both register 23 and 24

UCM2 Programming Manual Manual 5 Examples 65

Hex Unsigned
Decimal

Decimal Binary

Register 23 4438 17464 17464 0100 0100 0011 1000

Register 24 03F5 1013 1013 0000 0011 1111 0101

Hex Unsigned
Decimal

Decimal Binary

Register 23 4400 17408 17408 0100 0100 0000 0000

Register 24 03F5 1013 1013 0000 0011 1111 0101

Hex Unsigned
Decimal

Decimal Binary

Register 23 4438 17464 17464 0100 0100 0011 1000

Register 24 03F5 1013 1013 0000 0011 1111 0101

Characters remaining: "543F"

ON RECEIVE BYTE

Command: ON RECEIVE BYTE(OUTPUT[23]) RETURN

Results after WAIT:

Characters used: D (hexadecimal 44)

Translated to: hexadecimal 0044

Note: Only OUTPUT[23] is changed.

Characters remaining: "876543F"

ON RECEIVE WORD

Command: ON RECEIVE WORD(OUTPUT[23]) RETURN

Results after WAIT:

Characters used: D8 (hexadecimal 44, 38)

Translated to: hexadecimal 4438

Note: Only OUTPUT[23] is changed.

Characters remaining: "76543F"

ON RECEIVE RWORD

Command: ON RECEIVE RWORD(OUTPUT[23]) RETURN

Results after WAIT:

Characters used: D8 (hexadecimal 44, 38)

Translated to: hexadecimal 3843

66 Examples 5 UCM2 Programming Manual Manual

Hex Unsigned
Decimal

Decimal Binary

Register 23 0044 68 68 0000 0000 0100 0100

Register 24 03F5 1013 1013 0000 0011 1111 0101

Hex Unsigned
Decimal

Decimal Binary

Register 23 4438 17464 17464 0100 0100 0011 1000

Register 24 03F5 1013 1013 0000 0011 1111 0101

Note: Only OUTPUT[23] is changed.

Characters remaining: "76543F"

UCM2 Programming Manual Manual 5 Examples 67

Hex Unsigned
Decimal

Decimal Binary

Register 23 3843 14403 14403 0011 1000 0100 0011

Register 24 03F5 1013 1013 0000 0011 1111 0101

6 Compiling

QCOMPILE.EXE

QCOMPILE2.EXE is an MSDOS compatible program for compiling the UCM2
configuration text file into machine readable code. All UCM2 configurations must be
compiled before they can be downloaded into the UCM2. The downloading is done by
another MSDOS compatible program QLOAD.EXE described in a later section of the
manual.

The QCOMPILE2 command syntax is as follows:

QCOMPILE2 filename[.ext] [-Ofile2][-Dmacro=string] [-Lfile3][-S][-W]

Where filename refers to the text file containing the source code for the UCM2.

The .ext is an optional extension to the filename. If no extension is included then .UCM2
is assumed by the compiler.

Options can appear in any order. Additional options may be displayed by using -? as an
option.

-O option

The -O option is for specifying an output file other than filename.ucc. If the -O option is
not used then COMPILE will create the output file filename.ucc. If the -O option is used
then COMPILE will create an output file named file2. If an extension is desired for file2
it needs to be added since no extension is assumed by the compiler.

-D option

The -D option is for specifying DEFINE macros at compile time. This is very useful for
compiling one UCM2 configuration file for more than 1 port of the same UCM2 module.
The macro portion of the -D option is the string inside of the UCM2 configuration file
that is to be found while string portion is macro’s replacement. It is equivalent to Find
what: macro Change to: string in DOS EDIT.

If, in the configuration file AMAZING.UCM2, the word Time has been used and Time
needs to have a value of 50 then the DOS command to compile AMAZING with the Time
replacement is:

QCOMPILE AMAZING -DTime= 50

UCM2 Programming Manual Manual 69

If the compile completes with no errors then the output file AMAZING.UCC will
be created. If more than one DEFINE is needed at compile time then they can be
added to the end of the COMPILE command as in:

COMPILE AMAZING -DTime=50 -DPort=1 -DFlavor=strawberry

-L option

The -L option is for telling the compiler to also generate a 68000 source listing.
The name of the DOS text file is file3. If an extension is desired for file3 it needs
to be added since no extension is assumed by the compiler.

The 68000 source listing, file3, is a text file that can be read by your favorite text
editor. If you have any questions about the way the compiler generates code for
the UCM2 then you can use the -L option. Most users will not have a use for this
option.

-S option

The S option is for generating a list of the location of each declared variable. The
variables are located in the 6x file areas of the UCM2.

The variable list is displayed as a table, sorted by the order that the variables were
declared. The table has columns that show the variable’s byte address, register
address, type, number of elements (if applicable), number of bytes, and what
thread they were assigned to.

-W option

The -W option disables warnings that indicate possible trouble but do not prohibit
the program from successfully compiling. Mostly used for disabling the warning
"Program is too large" warnings on large applications that use the optional large
flash.

Compiler Errors

When the UCM2 configuration file contains code that the compiler does not
recognize, variables out of range, code that is too long or any other error then the
compiler generates an error listing in the proj.err file. This listing will have the
compiler error number, the line number in the .UCM2 file where the error
occurred, a copy of the line in question, and a description of the error. The listing
will also summarize the total number of errors detected.

The programmer can use this listing to correct problems in the UCM2
configuration file. Since no object code is generated if an error occurs during the
compile, all errors must be repaired before a valid object file can be made for
downloading into the UCM2 module.

Debugging

For debugging purposes the user may want to store the error listing in a file in
order to refer to it later. This can be accomplished with the output redirection

70 Compiling 6 UCM2 Programming Manual Manual

feature of DOS. For example:

COMPILE filename >error.lst

The text that normally would go to the screen will now appear in the text file
error.lst.

UCM2 Programming Manual Manual 6 Compiling 71

7 Downloading Compiled Code

QLOAD.EXE
The program QLOAD.EXE is a Windows program that will download compiled applications into a UCM2
via Modbus serial or TCP/IP Ethernet.

QLOAD using Serial Port

1. The module must be powered.

2. Connect the module port 1 to the PC using the appropriate cable. (MM1 cable for
the QUCM and DUCM modules and MU1 cable for the MUCM)

3. Application Switch must be in HALT. To accomplish this, use the arrow keys on
the module to navigate to the App option in the Main menu. Use the Enter or
Right arrow button to select the option. Select the Switch option in the Apps
menu. Use the Up or Down arrow to select the Halt option. Use the Enter or Left
arrow to accept the choice.

4. Start QLOAD.EXE. The Windows Start Menu link is “Start, Programs, Niobrara,
Apps, QLOAD.” See Error: Reference source not found

UCM2 Programming Manual Manual 73

Figure 7.1: Change Application Switch
to Halt

5. If necessary, Click on the Browse button and select your application.

6. Click on the “Modbus Serial” tab and verify the following:

1. The proper PC serial port is selected (COM1, COM2,..).

2. The baud rate matches the baud rate of the module (default is 9600).

3. The Modbus Drop is 255.

4. The Application 1 radio button is selected.

5. The Parity matches the parity of the module (default is Even).

6. The number of data bits match that of the module (default is 8 bits).

7. ASCII is NOT checked.

7. Press the “Start Download” button. QLOAD will open a progress bar to
show the status of the download see Figure 7.3.

74 Downloading Compiled Code 7 UCM2 Programming Manual Manual

Figure 7.2: QLOAD Application

8. The application Switch must be in Run for the application to be executed:

To accomplish this, use the arrow keys on the module to navigate to the
App option in the Main menu. Use the Enter or Right arrow button to
select the option. Select the Switch option in the Apps menu. Use the Up
or Down arrow to select the Run option. Use the Enter or Left arrow to
accept the choice. See Figure 7.4

or Restart the application. Use the arrow keys on the module to navigate
to the App option in the Main menu. Select the Restart option in the Apps
menu. See Figure 7.5

UCM2 Programming Manual Manual 7 Downloading Compiled Code 75

Figure 7.3: QLOAD Progress

Figure 7.4: Change Application Switch
to Halt

QLOAD using Ethernet Port

1. The module must be powered.

2. Application Switch must be in HALT. To accomplish this, use the arrow
keys on the module to navigate to the App option in the Main menu. Use
the Enter or Right arrow button to select the option. Select the Switch
option in the Apps menu. Use the Up or Down arrow to select the Halt
option. Use the Enter or Left arrow to accept the choice.

3. Start QLOAD.EXE. The Windows Start Menu link is “Start, Programs,
Niobrara, Apps, QLOAD.” See Figure 7.7

76 Downloading Compiled Code 7 UCM2 Programming Manual Manual

Figure 7.5: Restart the Application

Figure 7.6: Change Application Switch
to Halt

4. If necessary, Click on the Browse button and select your application.

5. Click on the “Modbus TCP” tab.

6. Enter the IP address of the module(i.e. 192.168.1.19).

7. Ensure the Modbus TCP Port matches that in the module(default 502).

8. The Modbus Drop is 255.

9. The Application 1 radio button is selected.

10. Press the “Start Download” button. QLOAD will open a progress bar to
show the status of the download see Figure 7.8.

UCM2 Programming Manual Manual 7 Downloading Compiled Code 77

Figure 7.7: QLOAD Application

11. The application Switch must be in Run for the application to be executed:

 To accomplish this, use the arrow keys on the module to navigate to the
App option in the Main menu. Use the Enter or Right arrow button to
select the option. Select the Switch option in the Apps menu. Use the Up
or Down arrow to select the Run option. Use the Enter or Left arrow to
accept the choice. See Figure 7.9

or Restart the application. Use the arrow keys on the module to navigate
to the App option in the Main menu. Select the Restart option in the Apps
menu. See Error: Reference source not found

78 Downloading Compiled Code 7 UCM2 Programming Manual Manual

Figure 7.8: QLOAD Progress

Figure 7.9: Change Application Switch
to Halt

UCM2 Programming Manual Manual 7 Downloading Compiled Code 79

Figure 7.10: Restart the Application

	1 UCM2 Programing Overview
	2 UCM2 Language Definitions
	Constant Data Representation <const>
	Decimal Integers
	Signed Integers
	Hexadecimal Integers
	Boolean Constants
	Floating Point Numbers
	Reserved Constants

	Variable Data Representation
	Arithmetic Expressions <expr>
	Numeric Operators
	Precedence of Operators
	Numeric Functions

	Labels <label>
	Logical Expressions <logical>
	Logical Operators
	Relational Operators

	Functions - <function>
	Message Descriptions <message description>
	Literal String <string>
	Message Functions

	Variable Fields
	Transmit usage of Variable length
	ON RECEIVE usage of Variable length

	Message Assignments

	3 UCM2 Language Statements
	Assignments
	BAUD
	CAPITALIZE
	CLEAR
	CLOSE
	CONNECT
	DATA
	DEBUG
	DECLARE
	DEFINE
	DELAY
	DUPLEX
	ERASE
	EXPIRED
	FOR...NEXT
	FLUSH
	GOSUB...RETURN
	GOTO
	IF...THEN...ELSE...ENDIF
	LCD
	LIGHT
	LISTEN
	MOVE
	MULTIDROP
	NICE
	ON CHANGE
	ON <expression>
	ON RECEIVE KEYPAD x
	ON RECEIVE PORT x
	ON RECEIVE SOCKET x
	ON TIMEOUT
	PARITY
	READ FILE
	REPEAT...UNTIL
	RETURN
	SET
	SET PORT x BAUD <const>
	SET PORT x CAPITALIZE <const>
	SET SOCKET x CAPITALIZE <const>
	SET PORT x CTS <const>
	SET PORT x DATA <const>
	SET DEBUG <const>
	SET PORT x DUPLEX <const>
	SET LIGHT <exp> <const>
	SET MODE <const>
	SET SOCKET <socket> NAGLE <const>
	SET PORT x MULTIDROP <const>
	SET PORT x RTS <const>
	SET PORT x DATA <const>
	SET PORT x PARITY <const>
	SET PORT x PPPUSERNAME <string const|string variable>
	SET PORT x PPPPASSWORD <string const|string variable>
	SET PORT x PPPHANGUP
	SET PORT x STOP <const>
	SET (bit)
	SOCKETSTATE
	STOP
	STOP (BITS)
	SWITCH...CASE...ENDSWITCH
	TOGGLE
	TOGGLE LIGHT
	TRANSMIT
	WAIT
	WHILE...WEND
	WRITE FILE

	4 UCM2 Language Functions
	Checksum Functions
	CRC
	CRC16
	CRCAB
	CRCBOB
	CRCDNP
	LRC
	LRCW
	SUM
	SUMW

	Message Description Functions
	BCD Binary - Coded Decimal conversion
	BYTE Single - (lower) byte conversion
	DEC Decimal - conversion
	HEX Hexadecimal - conversion
	HEXLC Lower - Case Hexadecimal conversion
	IDEC conversion
	LONG
	OCT Octal - conversion
	RAW – Raw register conversion
	RWORD
	TON – Translate on
	TOFF – Translate off
	UNS – Unsigned decimal conversion
	WORD

	Receive Buffer Functions
	WAITCHAR(<receive_buffer_variable>)
	GETCHAR(<receive_buffer_variable>)
	COUNTCHAR(<receive_buffer_variable>)

	Other Functions
	APPLICATION
	CHANGED
	MAX
	MIN
	SWAP
	THREAD
	RTS
	CTSx

	5 Examples
	TRANSMIT message function with register references
	TRANSMIT HEX
	TRANSMIT DEC
	TRANSMIT UNS
	TRANSMIT OCT
	TRANSMIT BCD
	ON RECEIVE message functions with register references
	ON RECEIVE HEX
	ON RECEIVE DEC
	ON RECEIVE UNS
	ON RECEIVE OCT
	ON RECEIVE BCD
	ON RECEIVE RAW
	ON RECEIVE BYTE
	ON RECEIVE WORD
	ON RECEIVE RWORD

	6 Compiling
	QCOMPILE.EXE
	-O option
	-D option
	-L option
	-S option
	-W option

	Compiler Errors
	Debugging

	7 Downloading Compiled Code
	QLOAD.EXE
	QLOAD using Serial Port
	QLOAD using Ethernet Port

