
MUCM Manual

MUCM
Installation and Programming Manual

This Manual describes the MUCM Universal Communication Module, its uses and set up. It also describes the
use of the programming software and compiler.

Effective: 15 January, 2007

Niobrara Research & Development Corporation
P.O. Box 3418 Joplin, MO 64803 USA

Telephone: (800) 235-6723 or (417) 624-8918
Facsimile: (417) 624-8920
Internet: www.niobrara.com

Modicon, TSX Momentum Automation, TSX Quantum Automation, Modbus, Modbus Plus are regis-
tered trademarks of Schneider Automation.

SY/MAX and Square D are registered trademarks of Square D Company.

PowerLogic is a trademark of Square D Company.

Allen-Bradley, A-B, and Data Highway are trademarks of Allen-Bradley Company.

SmartBob is a trademark of BinMaster, a division of Garner Industries.

Subject to change without notice.

© Niobrara Research & Development Corporation 1998 - 2004. All Rights Reserved.

 3

Contents

1 Introduction ...9

Specifications ...9
Real-Time Clock (RTC) ...10
LED Indicators and Descriptions ...11
Module Installation ...13
Serial Installation ..14
Momentum Tophat Configuration ..14

2 MUCM Programming Overview ..15

3 MUCM Language Definitions...17

Constant Data Representation - <const> ..17
Decimal Integers ...17
Signed Integers ..18
Hexadecimal Integers ..18
Boolean Constants ...18
Floating Point Numbers ..18
Reserved Constants ...18

Variable Data Representation ...18
Arithmetic Expressions - <expr> ...19

Numeric Operators ..19
Precedence of Operators..19
Numeric Functions ..20

Labels - <label> ..20
Logical Expressions - <logical> ...20

Logical Operators ..21
Relational Operators ..21

Functions - <function> ...21
Message Descriptions - <message description> ...22

Literal String - <string> ..22
String Variables ...22
Message Functions ..22

Variable Fields ...23
Transmit usage of Variable length ..23
ON RECEIVE usage of Variable length ...24

Message Assignments ..24

4

4 MUCM Language Statements..25

Assignments ...25
variable[<expr>]=<expr> ..25
variable[<expr>].<const>=<logical> ..25
<variable>.(<expr>)=<logical>...26
<variable>.<variable>=<logical> ...26
<variable>=<message description> ..26

BAUD ...26
CAPITALIZE ...26
CLEAR ..26
CLOSE ...26
CONNECT ...26
DATA ...27
DEBUG ..27
DECLARE..27
DEFINE ..28
DELAY ..28
DUPLEX ..28
ERASE ...28
EXPIRED ...29
FOR...NEXT...29
FLUSH ...29
GOSUB...RETURN ...29
GOTO ...29
IF...THEN...ELSE...ENDIF ...30
LIGHT ..30
LISTEN ..30
MOVE ..30
MULTIDROP ...30
ON CHANGE...31
ON <expression> ..31
ON RECEIVE PORT x ..31
ON RECEIVE SOCKET x ...31
ON TIMEOUT ...31
PARITY..31
READ FILE ..31
REPEAT...UNTIL ..32
RETURN ..32
SET ...32

SET PORT x BAUD <const> ...32
SET PORT x CAPITALIZE <const>SET SOCKET x CAPITALIZE <const> ...32
SET PORT x CTS <const> ...33
SET PORT x DATA <const> ...33
SET DEBUG <const> ...33
SET PORT x DUPLEX <const> ...33
SET LIGHT <exp> <const> ...33
SET MODE <const> ...33
SET SOCKET <socket> NAGLE <const> ...34
SET PORT x MULTIDROP <const> ...34
SET PORT x RTS <const> ...34
SET PORT x DATA <const> ..34
SET PORT x PARITY <const> ..34
SET PORT x PPPUSERNAME <string const|string variable>34
SET PORT x PPPPASSWORD <string const|string variable>34
SET PORT x PPPHANGUP ...35
SET PORT x STOP <const> ...35

5

SET (bit) ...35
SOCKETSTATE ..35
STOP ..35
STOP (BITS) ..35
SWITCH...CASE...ENDSWITCH ...35
TOGGLE ..36
TOGGLE LIGHT ...36
TRANSMIT..36
WAIT ..36
WHILE...WEND ..36
WRITE FILE ..36

5 MUCM Language Functions...39

Checksum Functions ..39
CRC ...39
CRC16 ...39
CRCAB ...39
CRCBOB...39
CRCDNP ...40
LRC ...40
LRCW ...40
SUM ..40
SUMW ..40

Message Description Functions ..41
BCD - Binary Coded Decimal conversion ..41
BYTE - Single (lower) byte conversion ..41
DEC - Decimal conversion ...41
HEX - Hexadecimal conversion ..42
HEXLC - Lower Case Hexadecimal conversion ..42
IDEC conversion ...42
LONG ..43
OCT - Octal conversion ..43
RAW - Raw register conversion ...43
RWORD ..43
TON - Translate on ...44
TOFF - Translate off ...44
UNS - Unsigned decimal conversion ..44
WORD...45

Other Functions ..45
APPLICATION...45
CHANGED ...45
MAX..45
MIN ...45
SWAP ..45
THREAD...46
RTS..46
CTSx..46

6 Examples...47

TRANSMIT message function with register references ..47
TRANSMIT HEX ...47
TRANSMIT DEC ...48
TRANSMIT UNS ...48

6

TRANSMIT OCT ...48
TRANSMIT BCD ...49

ON RECEIVE message functions with register references ...49
ON RECEIVE HEX ..50
ON RECEIVE DEC ..50
ON RECEIVE UNS ..51
ON RECEIVE OCT ..52
ON RECEIVE BCD ..53
ON RECEIVE RAW ...53
ON RECEIVE BYTE ..54
ON RECEIVE WORD ..55
ON RECEIVE RWORD ...55

7 Compiling ...57

QCOMPILE.EXE ...57
-O option ...57
-D option ...57
-L option ..58
-S option ..58
-W option...58

Compiler Errors ..58
Debugging ...58

8 Downloading Compiled Code..59

QLOAD.EXE ...59
Examples: ...59

9 Connector Pinouts...61

RS-232 port (Screw Terminal) ...61
RS-485 port (Screw Terminal) ...62

10 Recommended Cabling..63

Cabling required to configure an MUCM ..63
MUCM RS-232 to personal computer cabling ...63

MUCM RS-232 to Modicon Quantum PLC port(9-pin) (MU2)63
MUCM RS-232 to 9-pin DTE ..64
MUCM RS-232 to 25-pin DTE ..64
MUCM RS-485/422 to SY/MAX 9-pin Port ...65
MUCM RS-485/422 as SY/MAX 9-pin Port ...65
MUCM RS-232 to Modicon RJ-45 RS-232 (MU9) ...66
MUCM RS-485/422 to Modicon RJ-45 RS-485 Port (MU10)66
MUCM RS-485/422 to Modicon 9-Pin RS-485 Port (MU11)66
Isolated Cabling to SY/MAX Port ...66

Appendix A Downloading New Firmware .. 69

7

Appendix B ASCII Table .. 73

Appendix C MUCM Language Syntax ... 75

STATEMENTS ..75
CONSTANTS <const> in descriptions above..77
EXPRESSIONS <NUMERIC expr> above ...77

Operators: ..77
Precedence: ..77
Functions: ..77

LOGICAL EXPRESSIONS <logical> above ..78
Logical Operators: ...78
Logical Functions: ...78
Relational Operators: ...78

ARITHMETIC VARIABLES ..78
MESSAGE DESCRIPTIONS ..78

Operator: ..78
Literal string: ...78
Functions: ..79

MUCM RUN TIME ERROR CODES ...79
MUCM Reserved Word List ..79

Appendix D Modsoft Traffic Cop Configuration 81

MUCM ...81

Appendix E Concept 2.1 (or later) Configuration 83

Appendix F NR&D on the Internet ... 85

Appendix G Memory Map ... 87

PLC INPUTS (3x) ..87
PLC OUTPUTS (4x) ..88

Figures

Figure 1-1 MUCM Front Panel ..13

Figure 1-2 Mounting the MUCM on a DIN Rail ...14

Figure 9-1 Port 1 Screw Terminal ..61

Figure 9-2 Port 2 Screw Terminal ..62

Tables

Table 3-1 Constant Data Types ..17

Table 3-2 Numeric Operators ...19

Table 3-3 Checksum Functions ..20

8

Table 3-4 Additional Functions ..20

Table 3-5 Logical Operators ...21

Table 3-6 Relational Operators ..21

Table 3-7 Message Functions ...23

Table 4-1 Referencing Bits in Different Variable Types ...26

Table 4-2 Declared Variable Types ..28

Table 4-3 Well Known TCP Port Numbers ...30

Table 4-4 MUCM Internal File List ...32

Table 4-5 MUCM Internal File List ...37

Table 9-1 RS-232 Pinout ..61

Table 9-2 RS-485 Pinout ..62

Table B-1 ASCII Table ..74

Table G-1 INPUT Registers (3x) ...88

Table G-2 OUTPUT Registers (4x) ...89

MUCM Manual 1 Introduction 9

1

Introduction

The Niobrara MUCM is a user programmable communication module that is in the form factor of a
Modicon TSX Momentum base. The user may write write Applications to be loaded into the MUCM
to communicate with serial devices. Applications are written as a text file in a "BASIC" like language
developed specifically for writing serial protocols. The Applications are compiled and downloaded into
FLASH memory in the MUCM. Up to two Applications may be loaded in the MUCM and run at the
same time. Each Application has access to both serial ports and the Momentum tophat interface regis-
ters. Each Application may have up to 8 parallel tasking threads. Pre-written applications are also of-
fered to cover some of the more common protocols including Modbus RTU and ASCII, SY/MAX,
SY/MAX Net-to-Net, POWERLOGIC PNIM, RNIM Master and Slave, and IDEC. The MUCM inter-
faces to the Momentum tophat as an I/O module with up to 32 Input (3xxxxx) registers and 32 Output
(4xxxxx) registers.

The MUCM is available in two variations. MUCM102 with one RS-232 serial port and one RS-485
serial port. MUCM103 with two switch selectable RS-232 serial ports and two switch selectable RS-
485 serial ports .

Specifications
Mounting Requirements

Five inches of DIN rail or can be screwed directly to surface of wall or cabinet.

Maximum Tophat Interface Addressing
32 Words In
32 words Out

Power Rating
9-30V AC or DC, 5W max (with tophat)

Operating Temperature
0 to 60 degrees C operating. -40 to 80 degrees C storage.

Humidity Rating
up to 90% noncondensing

Pressure Altitude
-200 to +10,000 feet 1ms

Serial Communication Ports

10 Introduction 1 MUCM Manual

MUCM102

 Two 5-pin socket connectors, one RS-232, one RS485. User selectable baud rates
up to 19.2 Kbaud.

 MUCM103

 Four 5-pin socket connectors, two switch selectable RS-232, two switch selectable
RS-485. User selectable baud rates up to 19.2Kbaud.

Memory
2 Application FLASH Areas with 128K bytes of Program size each with appli-
cation 2 having a possible 256K bytes
32K bytes of Non-volatile Variable RAM memory
8K bytes of Application accessible FLASH
Two 128K bytes of Non-Volatile RAM memory as files.

Indicator lights
12 LEDs:

Green Power and Ready
Green User lights 1 and 2
Red User lights 3 and 4
Green Application 1 RUN, and Application 2 RUN
Amber Port 1 Transmit and Receive
Amber Port 2 Transmit and Receive

Physical Dimensions
Single width module.
Wt.:.5 lb. max(without tophat)
W: 4.91 in.
H: 5.56 in.
D: 1.84 in.(with tophat)

Real-Time Clock (RTC)
All MUCM’s have onboard a real-time clock, or RTC. The RTC’s data is displayed in Output registers
70 through 77. All values in registers 71 through 77 should be read as a decimal value. Register 71
displays the seconds, 72 displays the minutes, 73 displays the hours in a 24-hour format, 74 displays
day of the month, 75 displays the month of the year, 76 displays the year, and 77 displays the day of the
week. The day of the week is displayed as a number from 0 to 6, 0 being Sunday.

Register 70 displays the status of the data contained in these registers. A hex value of E000 indicates
unreliable data. A value of C000 indicates reliable data. The data will be unreliable the first time the
module is powered up, and each time the voltage supplied to the RTC drops below an acceptable level.
The values in registers must then be set to the desired values, and a hex value of C5C5 should be writ-
ten to register 70. This tells the RTC that the data has been set, and can now be treated as reliable.

MUCM Manual 1 Introduction 11

LED Indicators and Descriptions

LED Color Indication when ON

Pwr Green Power to the MUCM is present

Ready Green A tophat is communicating with the base

1 - 2 Green User Lights 1 and 2

3 - 4 Red User Lights 3 and 4

RN1 Green Application 1 RUN

TX1 Amber Port 1 Transmit

RX1 Amber Port 1 Receive

RN2 Green Application 2 RUN

TX2 Amber Port 2 Transmit

RX2 Amber Port 2 Receive

1 3 Rx1 Tx1 Rn1 Pwr
2 4 Rx2 Tx2 Rn2 Ready

12 Introduction 1 MUCM Manual

Figure 1-1 MUCM102 Front Panel

 1 3 Rx1 Tx1 Rn1 Pwr
 2 4 Rx2 Tx2 Rn2 ReadyTSX Momentum

Universal Communications
170 UCM 200 00

Niobrara R&D Corporation
9-30 VDC or AC

Tx Rx GND RTS CTS Tx+ Tx- Rx+ Rx- GND Run/Load

RS-232 RS-485

M
e
m

P
r
o
t

R
u
n

H
a
l
t

M
e
m

P
r
o
t

R
u
n

H
a
l
t

LED Area

Module Number
Module Description

Run/Load Switch
 Left to Run
 Right to Load Firmware

MEM Clear Switch
Power ConnectorApplication 2 Switch

 Left for Memory Protect
 Middle for Run/Program
 Right for Halt

RS-485 PortRS-232 Port
Application 1 Switch
 Left for Memory Protect
 Middle for Run/Program
 Right for Halt

MUCM Manual 1 Introduction 13

Figure 1-2 MUCM103 Front Panel

Module Installation
1 Mount the MUCM on DIN rail, or directly to a surface using the screw holes provided. The maxi-

mum tightening torque for these screws is 2-4 in-lbs.

2 With power applied to the MUCM, all LEDs should strobe and when finished, the green Power
LED should illuminate and remain lit. This indicates that the MUCM has passed its internal self
checks and is ready.

3 If the MUCM has a Momentum tophat installed, and the tophat is communicating to the MUCM,
then the green Ready LED should illuminate.

 1 3 Rx1 Tx1 Rn1 Pwr
 2 4 Rx2 Tx2 Rn2 ReadyTSX Momentum

Universal Communications
170 UCM 200 00

Tx Rx GND RTS CTS Tx Rx GND RTS CTS

Run/Load

RS-232 RS-232
R
u
n

H
a
l
t

LED Area

Module Number
Module Description

Run/Load Switch
 Left to Run
 Right to Load Firmware

MEM Clear Switch
Power ConnectorApplication 2 Switch

 Left for Memory Protect
 Middle for Run/Program
 Right for Halt

RS-485 Ports

RS-232 Ports
Application 1 Switch
 Left for Memory Protect
 Middle for Run/Program
 Right for Halt

Niobrara R&D Corporation

Tx+ Tx- Rx+ Rx- GND Tx+ Tx- Rx+ Rx- GND

RS-485 RS-485

Mem
Prot

R
u
n

H
a
l
t

Mem
Prot

RS-485

RS-232

RS-485

RS-232

9-30
VDC/AC

1 2
Port Selection Switches

Select the Mode
used by each port.
Either RS-232 or
RS-485

14 Introduction 1 MUCM Manual

Figure 1-3 Mounting the MUCM on a DIN Rail

Serial Installation
The MUCM connects to external serial devices through Port 1 or Port 2 using the switch selectable
modes RS-232 or RS-485.

Momentum Tophat Configuration
A maximum of 32 words of Input and 32 words of Output may be accessed via the Momentum Tophat
Interface. These words are accessed like other I/O bases.

DIN Rail

MUCM Manual 2 MUCM Programming Overview 15

2

MUCM Programming Overview

The user programs¤ that run in the MUCM are known as Applications. Applications are written in the¤
MUCM language with a text editor, compiled with the QCOMPILE program, and downloaded into the
MUCM to run. The MUCM allows up to two Applications to run at the same time. Each Application
has its own separate memory for variables as well as shared access to the PLC Rack I/O interface via
the INPUT[x] registers and the OUTPUT[x] registers. These I/O words are the only directly common
memory connection between the two Applications although Applications may share data through RAM
files that are accessible using the READ FILE and WRITE FILE structures. Applications may be di-
vided into multiple THREADs which multi-task within the Application. Up to eight THREADs may be
written into an Application.

Each Application has full access to both serial ports, and as mentioned above the PLC I/O registers.
Communication messages are sent from an Application using the TRANSMIT statement and are re-
ceived with the ON RECEIVE statement. Built-in functions for calculating checksums are provided.

The general outline for an MUCM application is shown below:

{Comments}

DECLARE global_variables

FUNCTIONS

{general startup configuration code}

THREAD 1

DECLARE local_variables

{thread 1 application code as an endless loop}

THREAD 2

DECLARE local_variables

{thread 2 application code as an endless loop}

16 MUCM Programming Overview 2 MUCM Manual

Application code located before thread 1 is processed first as the application starts and then all threads
start at the same time. Declares located before thread 1 are global and accessible in any of the threads.
Declares within a thread are local only to that thread.

MUCM Manual 3 MUCM Language Definitions 17

3

MUCM Language Definitions

The MUCM language is its own unique structured language, although the user will probably notice
similarities with BASIC, PASCAL, and C. Labels are used to control program flow. Line numbers are
not required. The following definitions apply through this manual:

Constant Data Representation - <const>
If numeric data is to remain the same during the entire operation of the MUCM program then they
should be treated as constants. The MUCM supports unsigned decimal integers (16 bits), signed deci-
mal integers, hexadecimal integers, long integers (32 bit), floating point numbers (32 bit), boolean con-
stants, and a few reserved constants. The use of a constant is referred to as <const> in this manual.

Table 3-1 Constant Data Types

Decimal Integers

Decimal integers are defined as the unsigned whole numbers within the range from 0 through 65,535.
The following are examples of decimal integers:

0
32114
59
65311

Constant Data
Type

Range Prefix Symbol

Decimal 0...65,535 NA

Signed Integer -32768...32767 NA

Hexadecimal
Integer

0...FFFF x

Long Integers 0...4294967295 NA

Floating Point 8.43 x 10E-37... 3.402 x 10E38

Boolean Constants TRUE, FALSE NA

Reserved Constants EVEN,ODD,NONE NA

18 MUCM Language Definitions 3 MUCM Manual

Signed Integers

Signed integers are defined as the whole numbers within the range from -32768 through 32767. The
following are examples of signed integers.

-514
0
31
-1

Hexadecimal Integers

Hexadecimal integers are defined as the hexadecimal representation of the whole numbers within the
range from 0 through FFFF. Hexadecimal numbers are defined by the prefix x. The following are ex-
amples of hexadecimal constants:

x12AB
xf34c
x15

Boolean Constants

There are two predefined boolean constants: TRUE and FALSE. The following are valid uses of the
boolean constants:

SET CAPITALIZE FALSE
SET DEBUG TRUE

Floating Point Numbers

Floating point constants must end with a decimal point and at least one decimal place. The following
are valid floating point examples:

-1.0
3.14159
2.5E-11

Reserved Constants

The following constants are reserved for the use in the SET PARITY statement: EVEN, ODD, and
NONE. The following are valid uses of the reserved constants:

SET PARITY EVEN
SET PARITY ODD
SET PARITY NONE

Variable Data Representation
The MUCM uses alpha-numeric names for variables and each variable must be explicitly declared us-
ing the DECLARE statement. The possible variable types supported by the MUCM are listed below:

• BYTE (8 bits signed)

• UNSIGNED BYTE (8 bits unsigned)

• WORD (16 bits signed)

• UNSIGNED WORD (16 bits unsigned)

• LONG (32 bits signed)

• TIMER (32 bits signed)

• FLOAT (32 bits signed)

• STRING (an array of 8 bit bytes)

MUCM Manual 3 MUCM Language Definitions 19

• SOCKET (IP socket)

If a type is not included in the DECLARE then the type defaults to a SIGNED WORD.

It is also possible to define single dimensional arrays of variables using the form variable[size], and
two-dimensional arrays using the form variable[Asize, Bsize]. Valid array indices for array[N] are
0..(N-1).
Multiple variables may be declared on a single statement with commas as separators.
The following statements are valid DECLARE examples:

DECLARE BYTE apple
DECLARE WORD x, y, zebra
DECLARE WORD r[100], group[10]
DECLARE SOCKET s[8], mysock
DECLARE STRING in[25]
DECLARE WORD a, b, c FLOAT x, y, z {the , after the c is optional. a, b, and c are

words and x, y, and z are floats.}
There are two predefined arrays of words that are fixed and reserved: INPUT[x] and OUTPUT[x]. The
INPUT[x] array ranges from index 0 through 31 inclusive and refers to the 32 possible PLC input (3x)
registers on the backplane. These words are PLC Read-Only and may be modified only by the MUCM
applications. The OUTPUT[x] array ranges from index 0 through 2015. Index values 0 through 31 are
reserved for the 32 possible PLC OUTPUTs (4x registers) and are Read-Only to the MUCM applica-
tions. OUTPUT[32] through OUTPUT[2015] are Read/Write by the MUCM Applications.
The OUTPUT and INPUT variables are global to both Applications and all Threads within the Applica-
tions. Variables declared before the first THREAD statement are global to a given Application. Vari-
ables declared within a THREAD are local to that Thread.

Arithmetic Expressions - <expr>
Numeric expressions, referred as <expr> in this manual, involve the operation of variables and con-
stants through a precedence of operators and functions.

Numeric Operators

Table 3-2 Numeric Operators

Precedence of Operators

The order of precedence of supported numeric operators are as follows:

Numeric
Operator

Description Example

+ Addition x + 5

- Subtraction OUTPUT[10] - 5

* Multiplication apple * 5

/ Division z / 5

% Modulus OUTPUT[25] % 5

& Bitwise AND OUTPUT[25] & x100

| Bitwise OR OUTPUT[25] | x100

^ Bitwise Exclusive OR INPUT[25] ^ x100

>> Bitwise Shift Right BYTE >> 4

<< Bitwise Shift Left I << 2

- Unary Negation -OUTPUT[25]

~ Unary Bitwise Complement ~OUTPUT[25]

() Parentheses (OUTPUT[25] + 5) * 3

20 MUCM Language Definitions 3 MUCM Manual

1 Sub expressions enclosed in parentheses

2 Unary Negation or Unary Complement

3 *, /, % From left to right within the expression.

4 +, - From left to right within the expression.

5 <<, >> From left to right within the expression.

6 &, ^, | From left to right within the expression.

Numeric Functions

The MUCM supports a group of seven checksum calculating functions to be used only within message
descriptions:

Table 3-3 Checksum Functions

The first <expr> is the starting index. The next <expr> is the ending index. The last <expr> is the
initial value usually 0 or -1.

These additional functions are also provided:

Table 3-4 Additional Functions

Labels - <label>
The MUCM supports alphanumeric labels for targets of GOTO and GOSUB functions. The label con-
sists of a series of characters ended with a colon. Labels must start with a alphabetic character, num-
bers are not allowed as the first character in a Label. Labels may not be the exact characters in an
MUCM language reserved word. The label TIMEOUTLoop: is valid while TIMEOUT: is not valid.

Logical Expressions - <logical>
The MUCM supports the following logical operators and relational operators. These are referred to as
<logical> elsewhere in this manual.

Function Description

CRC(<expr>,<expr>,<expr>) Cyclical Redundancy Check (CCITT Standard)

CRC16(<expr>,<expr>,<expr>) Cyclical Redundancy Check

CRCAB(<expr>,<expr>,<expr>) Special CRC16 for A-B applications

CRCBOB(<expr>,<expr>,<expr>) Special CRC16 for BinMaster SmartBob applications

CRCDNP(<expr>,<expr>,<expr>) Special CRC16 for DNP 3.00 applications

LRC(<expr>,<expr>,<expr>) Longitudinal Redundancy Check by byte

LRCW(<expr>,<expr>,<expr>) Longitudinal Redundancy Check by word

SUM(<expr>,<expr>,<expr>) Straight Sum by byte

SUMW(<expr>,<expr>,<expr>) Straight Sum by word

Function Description Example OUTPUT[45]=x1234, OUTPUT[46]=xABCD

MIN(<expr>,<expr>) Provides a result of the <expr> which evaluates
to the smaller of the two expressions.

OUTPUT[100] = MIN(OUTPUT[45],OUTPUT[46]) results
in OUTPUT[100] = x1234

MAX(<expr>,<expr>) Provides a result of the <expr> which evaluates
to the larger of the two expression.

OUTPUT[100] = MAX(OUTPUT[45]*x0A,OUTPUT[47])
results in OUTPUT[100] = x65E0

SWAP(<expr>) Reversed the byte order of the register. OUTPUT[100] = SWAP(OUTPUT[46]) results in
OUTPUT[100] = xCDAB

MUCM Manual 3 MUCM Language Definitions 21

Logical Operators

Table 3-5 Logical Operators

Relational Operators

Table 3-6 Relational Operators

Functions - <function>
Functions are general purpose sections of code that may be accessed from multiple threads and other
functions in an application. Functions are similar to a subroutine where the parameters are passed
to/from the function during the call.

Memory for variables declared within a function are allocated when the function is called, and the
memory is freed when the function exits. Variable names within a function can have the same name as
global or thread local variables. When a variable is referenced within a function, the compiler checks
first for function local variables, then for thread local variables, then for global variables by that name.

NOTE: At the present time, only "word" variables may be passed as parameters to functions. If the
function must process long, byte, string, float, or arrays then they must be declared as global.

FUNCTION <function name> <comma separated variable list>
(function body)

ENDFUNC <returned variable list>

Logical
Operator

Definition Example

AND Result TRUE if both TRUE IF <expr> AND <expr> THEN

OR Result TRUE if one or both TRUE IF <expr> OR <expr> THEN

NOT Inverts the expression IF NOT(<expr>) THEN

Relational
Operator

Definition Example

< LESS THAN IF <expr> < <expr> THEN

> GREATER THAN IF <expr> > <expr> THEN

<= LESS THAN or EQUAL IF <expr> <= <expr> THEN

>= GREATER THAN or EQUAL IF <expr> >= <expr> THEN

= EQUAL IF <expr> = <expr> THEN

<> NOT EQUAL IF <expr> <> <expr> THEN

FUNCTION AVERAGE (VALUE1, VALUE2)
 DECLARE WORD RETURNVALUE
 RETURNVALUE = (VALUE1 + VALUE2) / 2
ENDFUNC(RETURNVALUE)

--or--

FUNCTION SQUARE (VALUE)
ENDFUNC (VALUE * VALUE)

22 MUCM Language Definitions 3 MUCM Manual

Message Descriptions - <message description>
The <message description> refers to the actual serial data that is transmitted from the MUCM port or
expected data that is to be received by the port. The <message description> may include literal strings,
results of various message functions and the concatenation of the above.

Literal String - <string>

A literal string is a string enclosed in quotes. "This is a literal string."

Literal strings may include hexadecimal characters by form \xx where xx is the two digit hex number of
the character. This is useful for sending non-printable characters. "This is another literal
string.\0D\0A" will print the message with a carriage return (0D) and a line feed (0A).

Embedded quotation marks may be included in literal strings by the insertion of \" in the location of the
embedded quote. "This will print a \"quote\" here."

Embedded \ characters may similarly be inserted by using \\.

String Variables

String variables may be embedded directly into a message description:

DECLARE STRING ALPHA[20]
ALPHA = "ABC123"
TRANSMIT PORT 1 "=BEFORE=":ALPHA:"=AFTER="

would send the string =BEFORE=ABC123=AFTER= out serial port 1. Similarly, string variables may
be embedded directly into ON RECEIVE statements:

ON RECEIVE PORT 1 ALPHA:"\0D" GOTO NEXT

would place all characters received before the Carriage Return (0x0D) into the string variable AL-
PHA. Care must be taken to ensure that the data read into the string is not longer than the string decla-
ration. For instance, if the above ON RECEIVE were to attempt to put 21 characters into ALPHA,
which was declared with a length of 20 bytes, the program would halt, with runtime stop code 7 (Value
out of bounds).

Message Functions

The MUCM can perform a variety of functions on transmitted and received data. When the MUCM is
using these functions for transmitting, register data and expressions are turned into strings according to
the function’s rules. When the MUCM is using these functions for receiving, incoming strings are
either matched to the strings that the MUCM expected to receive or they are translated into data and
stored in registers.

The following is a list of message functions, each function is described in more detail on pages 42
through 44.

MUCM Manual 3 MUCM Language Definitions 23

Table 3-7 Message Functions

The message functions that take the form FUNC(<expr>,<expr>) use the following rules: When using
these functions with TRANSMIT, the first <expr> is the data to be translated and transmitted. When
using these functions with ON RECEIVE, replace the first <expr> with <variable> to have the incom-
ing string translated and placed into the register OUTPUT[] or use (<expr>) to have the expression
evaluated and matched to the incoming string. The second <expr> in the these functions is the number
of characters either to transmit or to receive. An error will be generated at compile or run time if this
expression evaluates to less than zero.

RAW takes the form RAW(<variable>,<expr>). In this case the first <expr> is the starting register
number and the second <expr> is the number of characters. Always uses the high byte first and then
the low byte.

The message functions that take the form FUNC(<expr>) have fixed character lengths. BYTE trans-
mits one character, the least significant byte, while WORD and RWORD each transmit two characters.
WORD transmits the most significant byte and then the least significant byte while RWORD reverses
the order, least significant then most significant. As in the previous message functions, when transmit-
ting use <expr> and when receiving either use <variable> to receive and place in a register or (<expr>)
to evaluate and match. For examples of the message functions see Chapter 6 - Examples.

In all of the message functions, only characters from the valid character set for that command can be
used.

Variable Fields
The width field of any transmit or receive element (that has a width) may be replaced with either of two
constructions. (Transmit RAW is an exception as shown below.) The first is just the word VARIABLE,
i.e. TRANSMIT DEC(OUTPUT[10],VARIABLE). The second is VARIABLE followed by a register
reference, i.e. TRANSMIT HEX(OUTPUT[11],VARIABLE OUTPUT[10]) which will write the actual
width to the specified register

Transmit usage of Variable length

A variable field in a TRANSMIT statement means one encoded with only the necessary number of dig-
its (no leading zeros).

For example, if OUTPUT[11] = 1234 then
TRANSMIT PORT 1 "$":DEC(OUTPUT[11], variable OUTPUT[10]):"#"

would send out the string $1234# and OUTPUT[10] would have the value 4. If OUTPUT[11] = 89
then the string $89# would be transmitted and OUTPUT[10] would equal 2.

This type of transmit structure applies to the BCD, UNS, DEC, HEX, OCT, and IDEC formats. The
TRANSMIT RAW variable structure requires a terminator byte of 00 hex at the end of the raw string.

Functions Description

BCD(<expr>) Binary Coded Decimal conversion

BYTE(<expr>) Least Significant (low) byte conversion

DEC(<expr>,<expr>) Decimal conversion (base 10) -32768 to 32767

HEX(<expr>,<expr>) Hexadecimal conversion (base 16)

IDEC(<expr>,<expr>) IDEC format hexadecimal conversion

OCT(<expr>,<expr>) Octal conversion (base 8)

RAW(<variable>,<expr>) Sends/Receives high byte then low byte of a register(s)

RWORD(<expr>) Sends/Receives low byte of an expression

UNS(<expr>,<expr>) Unsigned decimal conversion (base 10) 0 to 65,535

WORD(<expr>) Sends/Receives high byte then low byte of an expression

24 MUCM Language Definitions 3 MUCM Manual

The transmit raw variable sends up to but not including the null terminator. The optional count register
does not include the terminator in the count.

For example, if OUTPUT[11]=x486F, OUTPUT[12]=x7764, and OUTPUT[13]=x7900 then
TRANSMIT PORT 1 "$":RAW(OUTPUT[11], VARIABLE OUTPUT[10]):"#"

would send the string $Howdy# and OUTPUT[10] would equal 5. If OUTPUT[12]=x0000 then the
string $Ho# would be transmitted and OUTPUT[10] would equal 2.

ON RECEIVE usage of Variable length

A variable field in an ON RECEIVE statement must be followed by a literal field such as "\0d". The
first character of the literal field works as a terminator.

For example, A device sends a variable length number with a fixed number of decimal points such as
$125.01 or $3.99; the decimal point may be used as a terminator and it could be handled as follows:

ON RECEIVE port 1 "$":dec(OUTPUT[100],variable):".":dec(OUTPUT[101],2)
In the case of $125.01, register OUTPUT[100] = 125 and OUTPUT[101] = 1. For $3.99, register OUT-
PUT[100] = 3 and OUTPUT[101] = 99.

The ON Receive raw variable writes an extra zero byte to the registers following the received data. In
the case of an odd number of characters, the last register contains the final character in the MSB and a
zero in the LSB. In the case of an even number of characters, all 16 bits of the register following the
last two characters are set to zero. This null terminator is not included in the count optionally reported.

For example: A device transmits a variable length error message terminated with a carriage return and
line feed.

ON RECEIVE port 1 RAW(OUTPUT[500], variable OUTPUT[200]):"\0d\0a"

will accept the message and place it in packed ASCII form starting at register 500. Register 200 would
hold the number of characters (bytes) accepted in the string not including the carriage return or line
feed.

Message Assignments
It is sometimes convenient to apply the message descriptions of a TRANSMIT message and store the
message in a variable in the MUCM rather than transmit the string. This is possible by simply using the
assignment character = to a string variable.

STRINGVARIABLE = <message>

The message will be placed in the string variable and the LENGTH of the string will be set to the num-
ber of character is <message>. Any valid transmit message may be stored in this manner.

For example:
STRINGVAR = "Hello!\0d\0a"

would result in the string STRINGVAR containing the string "Hello!\0d\0a" (where \0d and \0a are
Carriage Return, and Line Feed, respectively).

Something more obviously useful might be:

STRINGVAR = byte(Device):"\03":word(Address):word(Count):rword(crc16(1,$-1,0))

which would place the reversed word of the checksum in register at the end of the string.

MUCM Manual 4 MUCM Language Statements 25

4

MUCM Language Statements

The MUCM language statements are described in this chapter. Statements control the operation of the
MUCM by determining the flow of the program.

The format of these statements includes the definitions from Chapter 3 - MUCM Language Definitions.
Whenever one of these definitions is referenced in a statement it is enclosed in brackets <>. For exam-
ple, whenever a statement requires an expression it will appear as <expr>. The words statement and
command are used interchangeably.

The word newline means a carriage return, line feed or both, whatever your text editor requires. Most
commands do not require newlines but those that do use the word newline. Since most commands do
not requires newlines, multiple statements can be placed on a single line. A whole program could be
written on a single line if no statements that require a newline are used. For readability, newlines be-
tween statements can be used without penalty.

Also note that, except in strings, capitalization in the MUCM program is ignored by the MUCM and its
compiler. The label Tom: is the same as the label TOM:. In literal strings, which are enclosed in
quotes "", the capitalization is maintained by the MUCM. The command SET CAPITALIZE can effect
the way the MUCM handles ASCII characters on transmitting and receiving.

Program flow within a THREAD is sequential, from the first statement to the second statement to the
third statement etcetera, unless a program flow control statement is reached. Program flow statements
can be jumps (GOTO or GOSUB), loops or conditionals (IF...THEN ...ELSE...ENDIF). After a jump,
program flow is still sequential starting with the statement immediately after the label. Loops can be
accomplished with FOR...NEXT, REPEAT ...UNTIL, or WHILE...WEND.

Assignments
The MUCM language allows for the assignment of values to variables and bits of variables. These as-
signments are similar to the BASIC LET statement.

variable[<expr>]=<expr>
This statement sets the variable specified by the first <expr> to the value obtained by the second
<expr>. The valid range of variable numbers in the first <expr> is dependent upon the DE-
CLARED range of the variable.

variable[<expr>].<const>=<logical>
This statement sets a single bit of a variable to be one (TRUE) or zero (FALSE). The <expr> can

26 MUCM Language Statements 4 MUCM Manual

have the values defined by the DECLARE of the variable. The valid values for <const> depend on
the type of <Expr> (see Table 5-1, below). <Logical> can have the values TRUE or FALSE.

Table 4-1 Referencing Bits in Different Variable Types

<variable>.(<expr>)=<logical>
This statement sets the bit of a register to be the evaluation of the <logical> segment.

<variable>.<variable>=<logical>
This statement sets the bit of a register to be the evaluation of the <logical> segment

<variable>=<message description>
This statement sets the string variable specified by the <expr> to the ASCII values obtained by
evaluation of the <message description>. The <message description> may be any valid message
used in a TRANSMIT command.

BAUD
See SET BAUD on page 32.

CAPITALIZE
See SET CAPITALIZE on page 32.

CLEAR
CLEAR variable[<expr>].<const> or CLEAR variable[<expr>].(<expr>)

The CLEAR statement sets a single bit of a variable to ZERO. The bit number <const> or <expr>
must evaluate within the range of 1-16 for OUTPUT registers, 0-7 for bytes, 0-15 for words, and
0-31 for long variables. To clear a single bit of a register to be set to one use the SET statement.

CLOSE
CLOSE SOCKET <socket variable> [TIMEOUT <expr>]

Closes the open IP connection associated with <socket variable>. The optional TIMEOUT speci-
fies how long the MUCM TCP/IP stack will wait for the other device to acknowledge the request
to close the connection before aborting (resetting) the connection. If no TIMEOUT is specified,
the MUCM will wait indefinitely for the other device to acknowledge the close request. A
TIMEOUT value of zero will cause the connection to be immediately closed, without the other de-
vices’ acknowledgment.

CONNECT
CONNECT <protocol> SOCKET <socket variable> <IP Address> PORT <port number>

Connect opens an IP connection using the <protocol> to the remote <IP Address> on the <port

Variable Type Range of Bits Bit Significance

OUTPUT[N] and
INPUT[N]

1...16 Modicon Bit Numbering: Most Significant Bit
(MSB) = Bit 1 ... LSB = Bit 16

BYTE 0...7 IEC Compliant Bit numbering:
MSB = Bit 7 ... LSB = Bit 0

WORD 0...15 IEC Compliant Bit numbering:
MSB = Bit 15 ... LSB = Bit 0

LONG, TIMER 0...31 IEC Compliant Bit numbering:
MSB = Bit 31 ... LSB = Bit 0

MUCM Manual 4 MUCM Language Statements 27

number>.

NOTE: Only <protocol>= TCP is presently supported.

The <IP Address> must be a comma separated decimal notation:

DECLARE SOCKET S, BYTE HOST[4]
HOST = 206,223,51,161
CONNECT TCP SOCKET S HOST PORT 80

would establish a connection to port 80 of the device with IP address 206.223.51.161.

DATA
See SET DATA on page 33.

DEBUG
See SET DEBUG on page 33.

DECLARE
DECLARE [SIGNED|UNSIGNED] [<variable type>} <variable name>[[array size]]

The DECLARE statement is a compiler instruction which creates a variable named <variable
name> of type <variable type>. Variables may be declared anywhere in the program, as long as
they are declared before they are referenced. Variables declared before the first THREAD state-
ment will bel global in scope, thus will be accessible to all the threads. Variables declared after a
THREAD statement will be accessible only within the thread in which it was declared. Variables
declared within a FUNCTION will be accessible only within that function.

If the SIGNED/UNSIGNED specification is omitted, the variable created will be SIGNED. If the
<variable type> is omitted, a WORD variable will be created. Thus the statement:

DECLARE FOO

will create a variable named FOO, which is a signed word variable. Multiple variable types may be
declared in one DECLARE statement:

DECLARE BAR, STRING A[40], B[30], FLOAT X, Y[10]

would create five variables: BAR is a signed word, A is a string with maximum length of 40 bytes,
B is a string with a maximum length of 30 bytes, X is a floating point variable, and Y is an array of
ten floating point variables (Y[0] ... Y[9]).

When a variable is referenced (i.e. Y[0] = 0.0), the compiler first checks whether the variable is a
function local variable (if the statement is inside a function), then checks whether the variable is a
thread local variable (if the statement is multi-threaded, and the statement appears after a THREAD
statement), then checks whether the variable was defined as a global variable. Thus, the same vari-
able name may be used in different threads, and each thread will access a different variable.

The available <variable types> are:

28 MUCM Language Statements 4 MUCM Manual

Table 4-2 Declared Variable Types

DEFINE
DEFINE <macro>=<replacement string> newline

The DEFINE statement is a compiler instruction for a global find and replace. When the MUCM
program is compiled the compiler finds every string <macro> and replaces it with the the string
<replacement string>. Both <macro> and <replacement string> are type <string>. A newline is
required to define the end of the replacement string. Use of this statement can help the readability
of the user program and also make the program easier to write.

DELAY
DELAY <expr>

The DELAY statement forces the MUCM to pause in its execution of other instructions until a pe-
riod of time equal to <expr> times 1ms has expired. Valid range is 0 to xFFFFFFFF.

DUPLEX
See SET DUPLEX on page 33.

ERASE
ERASE <variable>

The ERASE command initializes a variable or array to zero.

Variable Type Description Bytes
Used

Range

UNSIGNED BYTE Unsigned Byte (8-bit) variable. 1 0...255

SIGNED BYTE Signed Byte (8-bit) variable. 1 -128...127

UNSIGNED WORD Unsigned Word (16-bit) variable. 2 0...65535

SIGNED WORD Signed Word (16-bit) variable 2 -32768...32767

UNSIGNED LONG,
TIMER

Unsigned Long Word (32-bit) variable. 4 0...4294967296

SIGNED LONG Signed Long Word (32-bit) variable. 4 -2147483648...2147483647

FLOAT IEEE format 32-bit Floating Point
variable. Float variables are always
signed.

4

STRING String variable. Must be declared as an
array:
DECLARE STRING A[40]

2 +
String
Length

Strings in the MUCM are NOT zero-
terminated, thus each byte may
contain ANY value, including zero.

SOCKET Socket structures are used for TCP
Ethernet connections. Values in the
structure are not directly accessible,
except through statements
(CONNECT, LISTEN, TRANSMIT,
ON RECEIVE) and functions
(SOCKETSTATE ()).

1538

MUCM Manual 4 MUCM Language Statements 29

EXPIRED
ON EXPIRED(<variable>) GOTO <variable>

IF EXPIRED(<variable>) THEN <expression>

The EXPIRED command is used in conjunction with a declared timer to allow the user to perform
other functions based on a timeout. A timer is declared, and a value in milliseconds is assigned in
one or two commands. The user can then use the EXPIRED command to check if the timer has run
out.

FOR...NEXT
The FOR ... NEXT statement provides the ability to execute a set of instructions a specific number of
times. The variable <variable> is incremented from the value of the first <expr> to the value of the
second <expr>. Once the variable is greater than the second <expr>, control passes to the next program
statement following the NEXT. If the optional STEP expression is included, the variable <variable> is
incremented by the value equal to the STEP <expr>. If the STEP <expr> is not present a step of 1 is
assumed.

FOR <variable>=<expr> TO <expr>
one or more statements
NEXT

FOR <variable>=<expr> TO <expr> STEP <expr>
one or more statements
NEXT

FOR ... NEXT loops may be constructed to decrement from the first <expr> to the second <expr> using
the DOWNTO function. The STEP <expr> must be a negative number. If STEP <expr> is not present
a step of -1 is assumed.

FOR <variable>=<expr> DOWNTO <expr>
one or more statements
NEXT

FOR <variable>=<expr> DOWNTO <expr> STEP <expr>
one or more statements
NEXT

FOR...NEXT loops may be nested any number of levels.

FLUSH
FLUSH PORT x

The FLUSH statement empties the receive buffer for the specified port.

GOSUB...RETURN
GOSUB <label>

The GOSUB statement turns control of a program to another area of code while expecting to get
control back from a RETURN statement. It is useful for program flow control where one section
of code may be used several times. Somewhere in the program flow following <label> needs to be
a RETURN statement. The RETURN statement returns program control back to the GOSUB state-
ment that caused the jump. After a RETURN the MUCM will continue running using the state-
ment immediately following the GOSUB.

GOTO
GOTO <label>

The GOTO statement turns program control over to another area of code.

30 MUCM Language Statements 4 MUCM Manual

IF...THEN...ELSE...ENDIF
The IF ... THEN statement is used to control the program flow based upon the logical evaluation of the
expression in <logical>. When <logical> is true, the statements following the THEN are executed. If
<logical> is false the statements following the ELSE are executed.

IF <logical> THEN one or more statements followed by newline

IF <logical> THEN one or more statements ELSE one or more statements followed by a newline

When more statements are required for an IF ... THEN, the statements may be placed on additional
lines below the IF ... THEN. The ENDIF statement indicates the termination of the IF statement.

IF <logical> THEN newline
one or more statements
ENDIF

IF <logical> THEN newline
one or more statements
ELSE
one or more statements
ENDIF

LIGHT
See SET LIGHT on page 33.

LISTEN
LISTEN <protocol> SOCKET <socket number> PORT <protocol port number>

The listen command instructs the PPP port to use a socket to listen for a particular protocol on a given
port number. Presently only the TCP protocol is supported.

Example: LISTEN TCP SOCKET mysock PORT 502

Common TCP port numbers are shown in Table 4-3.

Table 4-3 Well Known TCP Port Numbers

1 Internet Protocols are available as Requests For Comment (RFCs). They are available on the
Internet via HTTP: http://www.rfc-editor.org
2 The Modbus/TCP specification is available http://www.modicon.com/openmbus/

MOVE
Reserved instruction for a special NR&D motion control application. Must not be used in user applica-
tion.

MULTIDROP
See SET MULTIDROP on page 34.

Well Known
Port Number

TCP Protocol Associated RFC 1

21 FTP 959

23 TELNET 854

25 SMTP 821

80 WEB Server (HTTP) 2616

110 POP3 1939

502 Modbus/TCP N/A2

MUCM Manual 4 MUCM Language Statements 31

ON CHANGE
ON CHANGE <variable> GOTO <label>

ON CHANGE <variable> RETURN

ON CHANGE <variable> & <expr> GOTO <label>

ON CHANGE <variable> & <expr> RETURN

The ON CHANGE statement functions within a WAIT loop (like an ON RECEIVE or ON
TIMEOUT), and performs the GOTO or RETURN depending upon the result of the value of <vari-
able>. When the value in <variable> is modified by another source, the ON CHANGE statement is
performed.

ON <expression>
ON <expression> GOTO

ON <expression> RETURN

When the expression evaluates TRUE the wait loop is exited and flow proceeds to the GOTO or
RETURN.

ON RECEIVE PORT x

ON RECEIVE SOCKET x
ON RECEIVE port 1 <message description> GOTO <label>

ON RECEIVE socket <socket name> <message description> GOTO <label>

ON RECEIVE port 2 <message description> RETURN

ON RECEIVE SOCKET <socket name> <message description> RETURN

The ON RECEIVE statement functions within a WAIT loop and performs the GOTO or RETURN
depending upon whether the incoming string exactly matches the <message description>.

ON TIMEOUT
ON TIMEOUT <expr> GOTO <label>

ON TIMEOUT <expr> RETURN

The ON TIMEOUT statement functions within a WAIT loop (like an ON RECEIVE or ON
CHANGE), and performs the GOTO or RETURN depending upon the elapsed time between in-
coming characters on the port. The result of the <expr> must fall within the range 0 to FFFF hex.
Like the DELAY function, the ON TIMEOUT <expr> waits for a period of time equal to <expr>
times 1ms.

PARITY
 See SET PARITY on page 34.

READ FILE
READ FILE <file number> OFFSET <offset value> <variable,variable,...>

The READ FILE statement allows an MUCM program to read memory from the 6x file areas of
the MUCM to the user memory area.

The <file number> is an expression which evaluates a number in Table 4-4.

32 MUCM Language Statements 4 MUCM Manual

Table 4-4 MUCM Internal File List

The <offset> is an expression which evaluates to the byte location for the start of the read.

*NOTE: MUCM-SE RAM block 1 at file 768 is only 16K bytes and block 2 does not exist. At-
tempting to access these RAM areas will result in a runtime error.

REPEAT...UNTIL
REPEAT

program statements

UNTIL <logical>

The REPEAT statement starts a loop based upon the evaluation of the <logical> condition located
in the UNTIL statement. The loop will only be performed as long as the <logical> is FALSE.
When the <logical> is TRUE, program execution jumps to the statement following the UNTIL.

Note: The program statements will execute at least once regardless of the condition of <logical>.
This is different than the WHILE...WEND or FOR...NEXT loops which only execute while the
<logical> is TRUE, and will not execute the program statements within their boundaries if the
<logical> is FALSE.

RETURN
See GOSUB...RETURN on page 29.

SET
The SET statement allows the initialization of the MUCM for the following parameters: Baud rate,
Capitalization of incoming characters, Data bits, Parity, Stop bits, and Debug mode. SET must be fol-
lowed by the serial port number for the action to take place.

SET PORT x BAUD <const>
The SET BAUD statement sets the baud rate of the port for the value. Any decimal value may be
chosen for the baud rate. Example: SET PORT 1 BAUD 9600

SET PORT x CAPITALIZE <const>
SET SOCKET x CAPITALIZE <const>

The SET CAPITALIZE statement performs a translation on incoming ASCII alphabet characters
from the lower case to the upper case. Example: SET PORT 2 CAPITALIZE TRUE or SET
PORT 1 CAPITALIZE FALSE.

File
Number

(dec)

File
Number

(hex)

Memory
Description

Memory Size

256 100 Application 1 Program 128K bytes

384 180 Application 1 Variables 32K bytes

512 200 Application 2 Program 128K bytes

640 280 Application 2 Variables 32K bytes

768 300 General Use Ram Block 1* 128K bytes

1024 400 General Use Ram Block 2* 128K bytes

1792 700 Application 2 Program Extension 128K bytes

2560 A00 Flash Block 1 8K bytes

2816 B00 Flash Block 2 8K bytes

MUCM Manual 4 MUCM Language Statements 33

SET PORT x CTS <const>
The SET CTS statement sets the operation of the CTS pin on the RS-232 port. Possible values are
CTS ON - The is the normal mode of CTS where CTS must be asserted to allow the serial port to
transmit.
CTS OFF - Allows the use of the CTS pin to be independently monitored for its state while the
serial port is allowed to transmit regardless of the state of CTS. This operation is very useful in
modem applications where CTS is wired to DCD on the modem so the MUCM can tell if the mo-
dem has carrier.

SET PORT x DATA <const>
The SET DATA statement sets the number of data bits for the operation of the port. Valid range is
5,6,7, or 8 bits. Example: SET PORT 1 DATA 8

SET DEBUG <const>
The SET DEBUG statement determines the operation of the MUCM port in the event of a run time
error. If SET DEBUG TRUE is used, the MUCM program will halt upon a run time error and
display the error number and line number in the appropriate registers. If SET DEBUG FALSE is
used, the MUCM program will halt upon a run time error and immediately restart the program
from the beginning.

SET PORT x DUPLEX <const>
The SET DUPLEX statement determines the operation of the port’s receiver. With DUPLEX
HALF, the receiver is only turned on when the port is not transmitting. With DUPLEX FULL, the
receiver is always on. DUPLEX HALF should is used in 2-wire applications.

SET LIGHT <exp> <const>
The SET LIGHT statement is used to determine the state of the 10 indicator lights for the MUCM.
SET LIGHT 1 ON turns on the light while SET LIGHT 1 OFF turns off the light. See also TOG-
GLE LIGHT on page 36.

SET MODE <const>
The SET MODE statement determines the operating mode of the port. Valid entries are UCM,
RTU, SYMAX, RNIM, and PPP.

UCM mode allows the use of raw TRANSMIT and RECEIVE statements to communicate with the
external device. Example: TRANSMIT PORT 1 "Example string"

RTU mode gives the MUCM more automatic control of the TRANSMIT and RECEIVE state-
ments. This mode lets the MUCM assume that the communication will be Modbus RTU. The pro-
grammer will create a Modbus packet in a byte array, then hand the MUCM a length and the name
of the array. During TRANSMIT, the MUCM will calculate and append the checksum to the end
of the packet. During RECEIVE, the MUCM will watch for the 3.5 character timeout, then verify
the checksum. The MUCM will then replace the data in the array with the new data from the reply.

DECLARE UNSIGNED BYTE CMD[100]
DECLARE WORD CMDLEN
...
TRANSMIT PORT 1 WORD(CMDLEN):RAW(CMD,CMLEN)
ON RECEIVE PORT 1 WORD(CMDLEN):RAW(CMD,CMLEN) GOTO <variable>

SYMAX mode works on the same principle as RTU mode. The MUCM will assume that the fol-
lowing communication is SY/MAX, and will handle checksums, ACK’s, DLE escapes, etc. , in-
volved in SY/MAX communications. During TRANSMIT, the programmer will hand the MUCM
the length of the SY/MAX packet data, the SY/MAX route escaped by xFF, and the SY/MAX
packet data. During RECEIVE, the MUCM will hand the programmer, the length of the reply, the
route escaped by xFF, and the SY/MAX reply data.

34 MUCM Language Statements 4 MUCM Manual

DECLARE STRING ROUTE[16], REPLYDATA[200]
DECLARE WORD REMOTE, COUNT, REPLYLEN
...
TRANSMIT PORT 1 WORD(6):RAW(ROUTE,LENGTH(ROUTE)):"\FF":"\00\03":
WORD(REMOTE):WORD(COUNT)
ON RECEIVE PORT 1 WORD(REPLYLEN):"\11":RAW(ROUTE,4):"\FF":"\86\03":
WORD((REMOTE)):RAW(REPLYDATA,REPLYLEN-4) GOTO <variable>

RNIM mode is nearly identical to SYMAX mode. The only differences are the addition of a Net-
work ID, transaction number, and a drop before the route.

DECLARE STRING ROUTE[16], REPLYDATA[200]
DECLARE WORD DROP, TRANSNUM, REMOTE, COUNT, REPLYLEN
...
TRANSMIT PORT 1 WORD(6):BYTE(DROP):BYTE(TRANSNUM):"\00":
RAW(ROUTE,LENGTH(ROUTE)):"\FF":"\00\03":WORD(REMOTE):WORD(COUNT)
ON RECEIVE PORT 1 WORD(REPLYLEN):"\11":BYTE(TRANSNUM):RAW(ROUTE,4):
"\FF":"\86\03":WORD((REMOTE)):RAW(REPLYDATA,REPLYLEN-4) GOTO <variable>

PPP Mode allows the MUCM or MUCM to use the serial port for TCP/IP communication using the
PPP protocol.

SET SOCKET <socket> NAGLE <const>
The Set Socket Nagle statement controls how data is sent out a TCP/IP connection. In a socket
with NAGLE OFF, every TRANSMIT SOCKET command will create its own Ethernet packet. In
a socket with NAGLE ON (The default state), data sent out the socket is buffered as necessary by
the MUCM, which results in larger packets and better throughput, especially for applications such
as a Telnet server or a WWW server.

SET PORT x MULTIDROP <const>
The SET MULTIDROP statement controls the operation of the port’s transmitter. With
MULTIDROP TRUE, the transmitter is only on while transmitting. With MULTIDROP FALSE,
the transmitter is always on.

SET PORT x RTS <const>
The SET RTS statement sets the operation of the RTS pin on the RS-232 port. Possible values are
RTS ON - Forces RTS on continuously
RTS OFF - Forces RTS off continuously
RTS AUTO - Allows RTS to behave in normal Push-to-Talk operation

SET PORT x DATA <const>
The SET DATA statement sets the number of data bits for the operation of the port. Valid range is
5,6,7, or 8 bits. Example: SET PORT 1 DATA 8

SET PORT x PARITY <const>
The SET PARITY statement determines the parity of the port. Valid entries are EVEN, ODD, or
NONE. Example: SET PORT 1 PARITY EVEN

SET PORT x PPPUSERNAME <string const|string variable>
The SET PPPUSERNAME statement determines username for the PPP connection between the
MUCM and the PPP client or server.

SET PORT x PPPPASSWORD <string const|string variable>
The SET PORT x PPPPASSWORD statement determines password for the PPP connection be-

MUCM Manual 4 MUCM Language Statements 35

tween the MUCM and the PPP client or server.

SET PORT x PPPHANGUP
The SET PORT x PPPHANGUP statement causes a graceful disconnect between the PPP connec-
tion of the MUCM and the client/server.

SET PORT x STOP <const>
The SET STOP statement determines the number of stop bits for the port. Valid entries are 1 or 2.
Example: SET PORT 2 STOP 2

SET (bit)
SET <variable>.<const> or SET <variable>.(<expr>)

The SET statement sets a single bit of a variable to ONE. The bit number <const> or <expr> must
evaluate within the range off 1-16 for OUTPUT registers, 0-7 for bytes, 0-15 for words, and 0-31
for long variables. To clear a single bit of a register to be set to one use the CLEAR statement.

SOCKETSTATE
ON SOCKETSTATE (<socket>).<const> GOTO <label>

ON SOCKETSTATE (<socket>).<const> RETURN

IF SOCKETSTATE (<socket>).<const> THEN <expression>

The SOCKETSTATE statement allows the Application to make decisions based on the status of a
socket that was initiated by a CONNECT statement. Status bits are set for the SOCKETSTATE of
each declared socket. Bit 15 indicates when a socket is open. Bit 14 indicates that the socket is
listening. These are the most useful bits.

STOP
The STOP statement causes the MUCM program to halt upon its execution. The program may be re-
started by clearing and then setting the command bit for the program.

STOP (BITS)
See SET STOP on page 35.

SWITCH...CASE...ENDSWITCH
SWITCH CASE<expr><statement(s)> [CASE <expr> <statement(s) ...] ENDSWITCH

The SWITCH...CASE...ENDSWITCH construct allows many mutually exclusive conditional state-
ments or routines to be written without nesting a lot of IF...ELSE...ENDIF statements. Only one of
the CASEs contained within the SWITCH...ENDSWITCH construct will be executed. For Exam-
ple:

SWITCH
 CASE X=2
 Y = 2 * Y {Will execute only if X = 2}
 CASE X < 5
 Y = X * 5 {Will execute only if X < 5, but not if X = 2}
 CASE Y > 10 {Logical expressions can operate on different variables}
 Y = 0
 CASE TRUE {Comparable to default: in C}
 Y = 99
 X = 0 {These will execute only if all other CASEs fail to match}
ENDSWITCH

36 MUCM Language Statements 4 MUCM Manual

Program execution will continue with the instruction immediately after the ENDSWITCH state-
ment, whether any CASE matches or not.

TOGGLE
TOGGLE <variable>.<const> or TOGGLE <variable>.(<expr>)

The TOGGLE statement changes the state of a single bit of a variable. The bit number <const> or
<expr> must evaluate within the range off 1-16 for OUTPUT registers, 0-7 for bytes, 0-15 for
words, and 0-31 for long variables.

TOGGLE LIGHT
TOGGLE LIGHT <expr>

The TOGGLE LIGHT statement is used to change the state of the 10 indicator lights for the
MUCM. See also the SET LIGHT command on page 33.

TRANSMIT
TRANSMIT PORT x <message description>

TRANSMIT SOCKET s <message description>

The TRANSMIT statement allows serial communication to be emitted from the port. The exact
string evaluated from the <message description> will be emitted.

WAIT
The WAIT statement follows a group of ON RECEIVE, ON CHANGE, ON <expression>, and ON
TIMEOUT statements. The WAIT statement causes a loop to occur until one of the ON RECEIVE,
ON CHANGE, or ON TIMEOUT conditions has occurred. Program flow will be directed by the ON
RECEIVE, CHANGE, <expression>, or TIMEOUT statement.

WHILE...WEND
WHILE <logical>

program statements

WEND

The WHILE statement starts a loop based upon the evaluation of the <logical> condition. The loop
will only be performed as long as the <logical> is TRUE. When the <logical> is FALSE, program
execution jumps to the statement following the WEND.

WRITE FILE
WRITE FILE <file number> OFFSET <offset value> <variable,variable,...>

The WRITE FILE statement allows an MUCM program to write memory from the user memory
area to memory in the 6x file areas of the MUCM

The <file number> is an expression which evaluates a number in Table 4-5.

MUCM Manual 4 MUCM Language Statements 37

Table 4-5 MUCM Internal File List

The <offset> is an expression which evaluates to the byte location for the start of the read.

*NOTE: MUCM-SE RAM block 1 at file 768 is only 16K bytes and block 2 does not exist. At-
tempting to access these RAM areas will result in a runtime error.

File
Number

(dec)

File
Number

(hex)

Memory
Description

Memory
Size

256 100 Application 1 Program 128K bytes

384 180 Application 1 Variables 32K bytes

512 200 Application 2 Program 128K bytes

640 280 Application 2 Variables 32K bytes

768 300 General Use Ram Block 1 128K bytes

1024 400 General Use Ram Block 2 128K bytes

1792 700 Application 2 Program Extension 128K bytes

2560 A00 Flash Block 1 8K bytes

2816 B00 Flash Block 2 8K bytes

MUCM Manual 5 MUCM Language Functions 39

5

MUCM Language Functions

The MUCM language includes a variety of commonly used functions to facilitate message genera-
tion and reception, and other program flow areas.

Checksum Functions

CRC
Form: CRC(<expr>,<expr>,<expr>)

The CRC function calculates the Cyclical Redundancy Check (CCITT standard) upon a message.
The first <expr> is the starting index. This value is number of the character in the message where
the CRC16 is to start. The second <expr> is the ending index, usually the $ or $-1 location. The
final <expr> is the initial value for the checksum, usually a 0 or -1.

CRC16
Form: CRC16(<expr>,<expr>,<expr>)

The CRC16 function calculates the Cyclical Redundancy Check upon a message. The first <expr>
is the starting index. This value is number of the character in the message where the CRC16 is to
start. The second <expr> is the ending index, usually the $ or $-1 location. The final <expr> is the
initial value for the checksum, usually a 0 or -1.

The CRC16 is a variation of the CCITT standard CRC and is sometimes called a CRC. The
MODBUS RTU protocol uses the CRC16.

CRCAB
Form: CRCAB(<expr>,<expr>,<expr>)

The CRCAB function calculates the CRC16 Check upon a message while leaving out the $-2 char-
acter. The first <expr> is the starting index. This value is the number of the character in the mes-
sage where the CRC16 is to start. The second <expr> is the ending index, usually the $ location.
The final <expr> is the initial value for the checksum, usually a 0.

The CRCAB is a variation of the CRC16 customized for use with the Allen-Bradley protocols.

CRCBOB
Form: CRCBOB(<expr>,<expr>,<expr>)

40 MUCM Language Functions 5 MUCM Manual

The CRCBOB function calculates the CRC16 Check upon a message while leaving out the $-2
character. The first <expr> is the starting index. This value is the number of the character in the
message where the CRC16 is to start. The second <expr> is the ending index, usually the $ loca-
tion. The final <expr> is the initial value for the checksum, usually a -1.

The CRCAB is a variation of the CRC16 customized for use with BinMaster Smartbob II’s.

CRCDNP
Form: CRCDNP(<expr>,<expr>,<expr>)

The CRCDNP function calculates the CRC16 Check upon a message while leaving out the $-1
character. The first <expr> is the starting index. This value is the number of the character in the
message where the CRC16 is to start. The second <expr> is the ending index, usually the $ loca-
tion. The final <expr> is the initial value for the checksum, usually a 0.

The CRCAB is a variation of the CRC16 customized for use with the DNP 3.00 protocol.

LRC
Form: LRC(<expr>,<expr>,<expr>)

The LRC function calculates the Longitudinal Redundancy Check upon a message. The first
<expr> is the starting index. This value is number of the character in the message where the LRC is
to start. The second <expr> is the ending index, usually the $ or $-1 location. The final <expr> is
the initial value for the checksum, usually a 0 or -1.

The LRC operates upon each byte of the message and the result of the function is a byte.

LRCW
Form: LRCW(<expr>,<expr>,<expr>)

The LRCW function calculates the Longitudinal Redundancy Check upon a message. The first
<expr> is the starting index. This value is number of the character in the message where the LRCW
is to start. The second <expr> is the ending index, usually the $ or $-1 location. The final <expr>
is the initial value for the checksum, usually a 0 or -1.

The LRCW operates upon each word of the message and the result of the function is a word.

SUM
Form: SUM(<expr>,<expr>,<expr>)

The SUM function calculates the straight hex sum of a message. The first <expr> is the starting
index. This value is number of the character in the message where the SUM is to start. The second
<expr> is the ending index, usually the $ or $-1 location. The final <expr> is the initial value for
the checksum, usually a 0 or -1.

The SUM function operates upon each byte of the message and returns a byte.

SUMW
Form: SUMW(<expr>,<expr>,<expr>)

The SUMW function calculates the straight hex sum of a message. The first <expr> is the starting
index. This value is number of the character in the message where the SUMW is to start. The sec-
ond <expr> is the ending index, usually the $ or $-1 location. The final <expr> is the initial value
for the checksum, usually a 0 or -1.

The SUMW function operates upon each word of the message and returns a word.

MUCM Manual 5 MUCM Language Functions 41

Message Description Functions

BCD - Binary Coded Decimal conversion
Usual Format: BCD(Register location, byte count)
or BCD(Register location, VARIABLE)
or BCD(Register location, VARIABLE, Register location)

Valid characters: hexadecimal 00 through 09, 10 through 19 ... 90 through 99.

Transmitting: Converts an expression into its decimal representation, breaks the decimal number
into pairs of digits and then translates each pair of digits into its BCD character.

TRANSMIT format: BCD(<expr>,<expr>)

Receiving: Converts BCD characters into pairs of decimal digits, assembles the pairs into a 16 bit
decimal number and then compares the number to an expression or places the number into an
MUCM register.

ON RECEIVE formats: BCD(<variable>,<expr>) or BCD((<expr>),<expr>)

Note: The MUCM port must be set for 8 bit for BCD to work correctly.

BYTE - Single (lower) byte conversion
Usual Format: BYTE(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its hexadecimal representation and transmits the lower
8 bits as a hexadecimal character.

TRANSMIT format: BYTE(<expr>)

Receiving: Interprets hexadecimal characters as 8-bit hexadecimal numbers and then compares the
numbers to an expression or places the numbers into the lower byte of MUCM registers and zeros
the upper byte of these registers.

ON RECEIVE formats: BYTE(<variable>) or BYTE((<expr>))

Note: If the MUCM port is set to 7 bit then bit 8 will always be zero.

DEC - Decimal conversion
Usual Format: DEC(Register location, byte count)
or DEC(Register location, VARIABLE)
or DEC(Register location, VARIABLE, Register location)

Valid characters: ASCII + (plus sign), - (minus sign) and 0 through 9

Transmitting: Converts an expression into its signed decimal representation, breaks the signed
decimal number into its sign and its digits and then translates each digit into its ASCII character.

TRANSMIT format: DEC(<expr>,<expr>)

After the significant digits the MUCM pads the front of the string with ASCII zeros. Does not
transmit the plus (+) sign for positive numbers but does transmit a minus sign (-) on negative num-
bers.

Receiving: Converts ASCII characters into decimal digits with a sign, assembles the sign and dig-
its into a 16 bit decimal number and then compares the number to an expression or places the num-
ber into an MUCM register.

ON RECEIVE formats: DEC(<variable>,<expr>) or DEC((<expr>),<expr>)

Total number of registers that can be affected: 1

Positive numbers can have a plus (+) sign preceding them but it is not required. Negative numbers
must have a minus (-) sign preceding them.

42 MUCM Language Functions 5 MUCM Manual

HEX - Hexadecimal conversion
Usual Format: HEX(Register location, byte count)
or HEX(Register location, VARIABLE)
or HEX(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and A through F

Transmitting: Converts an expression into its hexadecimal representation, breaks the hexadeci-
mal number into its digits and then translates each hex digit into its ASCII character.

TRANSMIT format: HEX(<expr>,<expr>)

Maximum number of characters that can be sent:

Receiving: Translates ASCII characters into hexadecimal digits, assembles the digits into 16 bit
hex numbers and then compares the numbers to an expression or places the numbers into MUCM
registers.

ON RECEIVE formats: HEX(<variable>,<expr>) or HEX((<expr>),<expr>)

Total number of registers that can be affected: 16 (64 characters)

HEXLC - Lower Case Hexadecimal conversion
Usual Format: HEXLC(Register location, byte count)
or HEXLC(Register location, VARIABLE)
or HEXLC(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and a through f

Transmitting: Converts an expression into its hexadecimal representation, breaks the hexadeci-
mal number into its digits and then translates each hex digit into its ASCII character. Functions the
same as HEX but accepts lower case characters a through f.

TRANSMIT format: HEXLC(<expr>,<expr>)

Maximum number of characters that can be sent: 4

Receiving: Translates ASCII characters into hexadecimal digits, assembles the digits into 16 bit
hex numbers and then compares the numbers to an expression or places the numbers into MUCM
registers. Transmits the hex alpha characters as lower case a through f.

ON RECEIVE formats: HEXLC(<variable>,<expr>) or HEXLC((<expr>),<expr>)

Total number of registers that can be affected: 1 (4 characters)

IDEC conversion
Usual Format: IDEC(Register location, byte count)
or IDEC(Register location, VARIABLE)
or IDEC(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and : ; < = > ?

Transmitting: Converts an expression into its hexadecimal representation, breaks the hexadecimal
number into its digits and then translates each hex digit into its pseudo-ASCII character. In
pseudo-ASCII, hex digits 0 through 9 are there normal ASCII characters while hex digits A
through F are replaced by the hex characters 3A through 3F which are the ASCII characters : ; < =
> and ?.

TRANSMIT format: IDEC(<expr>,<expr>)

Receiving: Converts pseudo-ASCII characters into hexadecimal digits, assembles the digits into 16
bit hexadecimal numbers and then compares the numbers to an expression or places the numbers
into MUCM registers.

ON RECEIVE formats: IDEC(<variable>,<expr>) or IDEC((<expr>),<expr>)

MUCM Manual 5 MUCM Language Functions 43

Note: This is the format that the IDEC processors and other devices use to pass register values. If
communicating to an IDEC processor, a Square D Model 50 or Micro-1, or any other devices that
use this pseudo-ASCII protocol this is a useful function.

LONG

Usual Format: LONG(Variable name)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 32-bit hexadecimal representation,
translates the 32-bit number into four 8-bit hexadecimal numbers and transmits
the bytes in order of descending significance. If the variable VAR of type long
contains 0x12345678, the four bytes would be transmitted: x12, x34, x56, x78.

TRANSMIT format: LONG(<expr>)

Receiving: Interprets four hexadecimal characters as four 8-bit hexadecimal numbers,
assembles the four 8-bit numbers into a 32-bit number, first number the high
byte, the second number in the second most significant byte, and the fourth
number the low byte, and then compares the number to an expression or places
the number into an MUCM variable.

ON RECEIVE formats: LONG(<variable>) or LONG((<expr>))

OCT - Octal conversion
Usual Format: OCT(Register location, byte count)

Valid characters: ASCII 0 through 7

Transmitting: Converts an expression into its octal representation, breaks the octal number into its
digits and then translates each digit into its ASCII character.

TRANSMIT format: OCT(<expr>,<expr>)

Receiving: Converts ASCII characters into octal representation.

ON RECEIVE formats: OCT(<variable>,<expr>) or OCT((<expr>),<expr>)

RAW - Raw register conversion
Usual Format: RAW(Register location, byte count)
or RAW(Register location, VARIABLE)
or RAW(Register location, VARIABLE, Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts registers into their hexadecimal representation and translates each 16-bit
hexadecimal number into a pair of 8-bit hexadecimal characters.

TRANSMIT format: RAW(<variable>,<expr>)

Receiving: Interprets hexadecimal characters as 8-bit hexadecimal numbers, assembles each pair
of 8-bit numbers into a 16-bit hexadecimal number, high byte then low byte, and then compares the
numbers to an expression or places the numbers into MUCM registers.

ON RECEIVE formats: RAW(<variable>,<expr>) or RAW((<expr>),<expr>)

Note: If the MUCM port is set to 7 bit then bit 8 and bit 16 will always be 0. RAW is an expanded
version of SY/MAX packed ASCII and can be used to transmit and receive packed ASCII charac-
ters as well as 8-bit characters.

RWORD
Usual Format: RWORD(Register location)

44 MUCM Language Functions 5 MUCM Manual

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 16-bit hexadecimal representation, translates the 16-
bit number into a pair of 8-bit hexadecimal numbers and transmits the lower eight bits and then the
upper 8 bits as hexadecimal characters.

TRANSMIT format: RWORD(<expr>)

Receiving: Interprets two hexadecimal characters as two 8-bit hexadecimal numbers, assembles
the two 8-bit numbers into a 16-bit number, first number low byte and second number high byte,
and then compares the number to an expression or places the number into an MUCM register.

ON RECEIVE formats: RWORD(<variable>) or RWORD((<expr>))

Note: Like WORD but in the reverse order, low byte then high byte.

TON - Translate on
The commands TON and TOFF work with the TRANSLATE command. The TRANSLATE com-
mand defines a string that is to be translated into another string. This is used when a character has
reserved meaning but could also be used in the translation of data. Up to 8 TRANSLATE strings
can be contained in an MUCM program.

An example: the escape character (hex 1B) could be used to interrupt a transmission but hex 1B
might also be valid data. When the remote process wants to interrupt transmission it sends a single
hex 1B. But when the remote process wants to send data containing hex 1B it sends 1B1B and the
MUCM is responsible for interpreting two hex 1Bs as a single 1B instead of as an escape. In this
case the translate command would be:

TRANSLATE 1:"\1B\1B" = "\1B"
and the command for receiving data that might contain a hex 1B:

ON RECEIVE TON(1):RAW(STRINGVAR,15):TOFF(1)
The TON command turns on translation during an ON RECEIVE or TRANSMIT. The format for
turning translation on is TON(<expr>) where <expr> is the translation number and must evaluate
to be between 1 and 8. The TON is usually followed by a TOFF.

TOFF - Translate off
The TOFF command turns off translation during an ON RECEIVE or TRANSMIT. The format for
turning translation off is TOFF(<expr>) where <expr> is the translation number and must evaluate
to be between 1 and 8.

UNS - Unsigned decimal conversion

Usual Format: UNS(Register location, byte count)
or UNS(Register location, VARIABLE)
or UNS(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9

Transmitting: Converts an expression into its unsigned decimal representation,
breaks the unsigned decimal number into its digits and then translates each
digit into its ASCII character.

TRANSMIT format: UNS(<expr>,<expr>)

Receiving: Converts ASCII characters into decimal digits, assembles the digits into a
16 bit unsigned decimal number and then compares the number to an expres-
sion or places the number into an MUCM register.

ON RECEIVE formats: UNS(<variable>,<expr>) or UNS((<expr>),<expr>)

Total number of registers that can be affected: 1

MUCM Manual 5 MUCM Language Functions 45

WORD

Usual Format: WORD(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 16-bit hexadecimal representation,
translates the 16-bit number into a pair of 8-bit hexadecimal numbers and
transmits the upper eight bits and then the lower 8 bits as hexadecimal charac-
ters.

TRANSMIT format: WORD(<expr>)

Receiving: Interprets two hexadecimal characters as two 8-bit hexadecimal numbers,
assembles the two 8-bit numbers into a 16-bit number, first number the high
byte and second number the low byte, and then compares the number to an ex-
pression or places the number into an MUCM register.

ON RECEIVE formats: WORD(<variable>) or WORD((<expr>))

Note: Like RWORD but always high byte then low byte. Also like RAW(<variable>,2).

Other Functions

APPLICATION
The APPLICATION internal variable returns a value of 1 or 2, indicating which application area
the program is running in. A program which is loaded into application area 2 of an MUCM will
read this variable as 2.

CHANGED
Format: CHANGED(<variable>) or CHANGED(<variable> & <expr>)

The CHANGED function provides a boolean result dependent upon whether the evaluated register
or mask of the register has been altered from the last operation of this function. The first occur-
rence of the CHANGED function will result in a FALSE regardless of the state of the evaluated
register.

The CHANGED function is used in any place referred to as <logical>, such as:
 IF CHANGED(OUTPUT[56]) THEN GOTO reply

The CHANGED function is similar to the ON CHANGE statement, but the CHANGED function
allows program execution to continue running instead of pausing to wait for the change to occur.

MAX
Format: MAX(<expr>,<expr>)

The MAX function provides a result of the <expr> which evaluates to the larger of the two expres-
sions.

MIN
Format: MIN(<expr>,<expr>)

The MIN function provides a result of the <expr> which evaluates to the smaller of the two expres-
sions.

SWAP
Format: SWAP(<expr>)

The SWAP function reverses the byte order of the result of the <expr>. If OUTPUT[4] = xABCD
then SWAP(OUTPUT[4]) would bring the result xCDAB.

46 MUCM Language Functions 5 MUCM Manual

THREAD
The THREAD variable returns a value for the thread number where the variable is called. Valid
results are 1-8 inclusive.

RTS
RTS is a variable which may be used to control the state of the Request to Send line for an MUCM
port. SET PORT 1 RTS ON will assert the RTS line. SET PORT 2 RTS OFF will negate the RTS
line. SET PORT 1 RTS AUTO will force RTS to be in "push-to-talk" mode.

CTSx
CTSx is a variable which gives the current state of Clear to Send on the MUCM port. CTS1 pro-
vides the state for port 1 while CTS2 is for port 2. IF CTSx = TRUE then CTS is asserted by the
external device. If CTSx = FALSE then CTS is negated.

MUCM Manual 6 Examples 47

6

Examples

TRANSMIT message function with register references
In the following TRANSMIT examples the following initial conditions are assumed:

TRANSMIT HEX
Command: TRANSMIT HEX(OUTPUT[23],4)
ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],2)
ASCII Characters transmitted: B2
Decimal values: 66 50
Hex values: 42 32

Command: TRANSMIT HEX(OUTPUT[23],8)
ASCII Characters transmitted: 0000A1B2
Decimal values: 48 48 48 48 65 49 66 50
Hex values: 30 30 30 30 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE)
ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE OUTPUT[600])
ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32

MUCM
Register

Decimal Signed
Decimal

Hex Octal Binary

OUTPUT[23] 41394 24142 A1B2 120662 1010 0001 1011 0010

OUTPUT[24] 20318 20318 4F5E 47536 0100 1111 0101 1110

48 Examples 6 MUCM Manual

OUTPUT[600] would then equal 4.

TRANSMIT DEC
Command: TRANSMIT DEC(OUTPUT[23],6)
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],5)
ASCII Characters transmitted: 24142
Decimal values: 50 52 49 52 50
Hex values: 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],12)
ASCII Characters transmitted: -00000024142
Decimal values: 45 48 48 48 48 48 48 50 52 49 52 50
Hex values: 2D 30 30 30 30 30 30 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],VARIABLE)
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE)
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32

TRANSMIT UNS
Command: TRANSMIT UNS(OUTPUT[23],5)
ASCII Characters transmitted: 41394
Decimal values: 52 49 51 57 52
Hex values: 34 31 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],3)
ASCII Characters transmitted: 394
Decimal values: 51 57 52
Hex values: 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],8)
ASCII Characters transmitted: 00041394
Decimal values: 48 48 48 52 49 51 57 52
Hex values: 30 30 30 34 31 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],8)
ASCII Characters transmitted: 00041394
Decimal values: 48 48 48 52 49 51 57 52
Hex values: 30 30 30 34 31 33 39 34

TRANSMIT OCT
Command: TRANSMIT OCT(OUTPUT[23],6)
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32

Command: TRANSMIT OCT(OUTPUT[23],3)
ASCII Characters transmitted: 662
Decimal values: 54 54 50
Hex values: 36 36 32

MUCM Manual 6 Examples 49

Command: TRANSMIT OCT(OUTPUT[23], VARIABLE)
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32

Command: TRANSMIT OCT(OUTPUT[23], VARIABLE OUTPUT[600])
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32
OUTPUT[600] would then equal 6.

TRANSMIT BCD
Command: TRANSMIT BCD(OUTPUT[23],3)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94

Command: TRANSMIT BCD(OUTPUT[23],1)
ASCII Characters transmitted: {not ASCII character}
Decimal values: 148
Hex values: 94

Command: TRANSMIT BCD(OUTPUT[23],5)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 0 0 4 19 148
Hex values: 00 00 04 13 94

Command: TRANSMIT BCD(OUTPUT[23], VARIABLE)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94

Command: TRANSMIT BCD(OUTPUT[23], VARIABLE OUTPUT[600])
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94
OUTPUT[600] would then equal 3.

ON RECEIVE message functions with register references
In the following ON RECEIVE examples it assumed that a WAIT follows immediately after the ON
RECEIVE command, there are no other ON RECEIVEs set up for the WAIT and the incoming string is
the following group of ASCII characters:

D876543F

Before the WAIT is executed, the following initial conditions are present:

Several of the examples have remaining characters. The remaining characters will be received by the
MUCM and buffered until the next ON RECEIVE is reached by the program. This is not good pro-
gramming practice unless these characters are meant to be handled elsewhere in the program. If they
are not handled correctly, ON RECEIVEs later in the program may give unexpected results.

MUCM
Register

Hex Unsigned
Decimal

Decimal Octal Binary

OUTPUT[23] A1B2 41394 -24142 120662 1010 0001 1011 0010

OUTPUT[24] 03F5 1013 1013 1765 0000 0011 1111 0101

50 Examples 6 MUCM Manual

ON RECEIVE HEX

Command: ON RECEIVE HEX(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D876
Translated to: hex D876

Remaining characters: "543F"

Command: ON RECEIVE HEX(OUTPUT[23],8) RETURN
Results after WAIT:
Characters used: D876543F
Translated to: hex D876 and hex 543F

Note: Every character is used by this HEX function. The string was meant for
a statement similar to this one, in that it handles all of the characters.

Command: ON RECEIVE HEX(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D8
Translated to: hex D8

Remaining characters: "76543F"

ON RECEIVE DEC

Command: ON RECEIVE DEC(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D8765
Translated to: decimal 8,765

Note: The first received character "D" is ignored by the DEC() function. This
is all right but if a D is always the leading character then a program
statement like ON RECEIVE "D":DEC(OUTPUT[23],4) may be better.

Hex Unsigned
decimal

Decimal Binary

Register 23 D876 55,414 -10,122 1101 1000 0111 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 1001

Hex Unsigned
decimal

Decimal Binary

Register 23 D876 55,414 -10,122 1101 1000 0111 0110

Register 24 543F 21,567 21,567 1001 1000 0011 1111

Hex Unsigned
decimal

Decimal Binary

Register 23 00D8 216 216 0000 0000 1101 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 223D 8,765 8,765 0010 0010 0011 1101

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

MUCM Manual 6 Examples 51

Remaining characters: "43F"

Command: ON RECEIVE DEC(OUTPUT[23],5) RETURN
Results after WAIT:
Characters used: D87654
Translated to: decimal 87,654%65,536 = 22,118

Note: The first "D" is ignored similar to the previous ON RECEIVE..
Remaining characters: "3F"

Command: ON RECEIVE DEC(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D87
Translated to: decimal 87

Note: The "D" is ignored as above.
Remaining characters: "6543F"

ON RECEIVE UNS

Command: ON RECEIVE UNS(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D8765
Translated to: unsigned decimal 8,765

Note: the first received character "D" is ignored by the UNS() function.
Remaining characters: "43F"

Command: ON RECEIVE UNS(OUTPUT[23],5) RETURN
Results after WAIT:
Characters used: D87654
Translated to: unsigned decimal 87,654%65,536 = 22,118

Hex Unsigned
decimal

Decimal Binary

Register 23 5666 22,118 22,118 0101 0110 0110 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 0057 87 87 0000 0000 0101 0111

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 223D 8,765 8,765 0010 0010 0011 1101

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 5666 22,118 22,118 0101 0110 0110 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

52 Examples 6 MUCM Manual

Note: The "D" is ignored. The next five characters "87654" do not make a
valid unsigned decimal number and so the UNS() function takes the in-
coming number and does a modulus 65,536. In this case the result is
22,118.

Remaining characters: "3F"

Command: ON RECEIVE UNS(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D87
Translated to: decimal 87

Note: The "D" is ignored.
Remaining characters: "6543F"

ON RECEIVE OCT

Command: ON RECEIVE OCT(OUTPUT[23],5) RETURN
Results after WAIT:
Characters used: D876543
Translated to: octal 76543

Note: The first two received characters "D8" are not octal digits and are ig-
nored by the OCT() function.

Remaining characters: "F"

Command: ON RECEIVE OCT(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D876
Translated to: octal 76

Note: The "D" and the "8" are ignored.
Remaining characters: "543F"

Command: ON RECEIVE OCT(OUTPUT[23],6) RETURN
Results after WAIT:
Characters used: D876543F
Translated to: nothing

Hex Unsigned
decimal

Decimal Binary

Register 23 0057 87 87 0000 0000 0101 0111

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 7D63 32,099 32,099 0111 1101 0110 0011 076543

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 003E 62 62 0000 0000 0011 1110 000076

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

MUCM Manual 6 Examples 53

Note: Since "D", "8" and "F" are not valid octal characters they are lost by the
OCT command. Between the "8" and the "F" the octal characters
"76543" were received, which is only 5 characters instead of the 6 re-
quired by this ON RECEIVE. Since the next character "F" was not an
octal character the previous 5 characters are ignored as not matching 6
octal characters in a row. So, not enough octal characters have been
transmitted for this command. If this command is used without an ON
TIMEOUT then the program will wait until 6 octal characters in a row
are sent before completing this ON RECEIVE. Also note that register
23 has not yet changed.

Remaining characters: None - waiting for 6 octal characters in a row

ON RECEIVE BCD

Command: ON RECEIVE BCD(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44 and 38)
Translated to: decimal 4,438

Note: The first two received characters "D" and "8" are used by the BCD()
function. The "D" is a hex character 44 and the "8" is a hex character 38
and so the unsigned decimal value is 4438.

Remaining characters: "76543F"

Command: ON RECEIVE BCD(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D876 (hexadecimal 44 38 37 36)
Translated to: decimal 44,383,736 converted to 15,864

Note: Both register 23 were changed
Remaining characters: None

ON RECEIVE RAW

Command: ON RECEIVE RAW(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44 38)

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 A1B2 41,394 -24,142 1010 0001 1011 0010 120662

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

Hex Unsigned
decimal

Decimal Binary

Register 23 1156 4,438 4,438 0001 0001 1001 1010

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 6AF8 15,864 15,864 0110 1010 1111 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

54 Examples 6 MUCM Manual

Translated to: hexadecimal 4438

Note: The "D" is a hex 44 and the "8" is a hex 38 so register 23 is now 4438
Remaining characters: "76543F"

Command: ON RECEIVE RAW(OUTPUT[23],1) RETURN
Results after WAIT:
Characters used: D (hexadecimal 44)
Translated to: hexadecimal 4400

Note: The RAW function places the first character into the upper bits of the
register and zeros the rest of the bits.

Remaining characters: "876543F"

Command: ON RECEIVE RAW(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D876 (hexadecimal 44 38 37 36)
Translated to: hexadecimal 4438 and 3736

Note: RAW changed both register 23 and 24
Characters remaining: "543F"

ON RECEIVE BYTE

Command: ON RECEIVE BYTE(OUTPUT[23]) RETURN
Results after WAIT:
Characters used: D (hexadecimal 44)
Translated to: hexadecimal 0044

Note: Only OUTPUT[23] is changed.
Characters remaining: "876543F"

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 4400 17,408 17,408 0100 0100 0000 0000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 3736 14,134 14,134 0011 0111 0011 0110

Hex Unsigned
decimal

Decimal Binary

Register 23 0044 68 68 0000 0000 0100 0100

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

MUCM Manual 6 Examples 55

ON RECEIVE WORD

Command: ON RECEIVE WORD(OUTPUT[23]) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44, 38)
Translated to: hexadecimal 4438

Note: Only OUTPUT[23] is changed.
Characters remaining: "76543F"

ON RECEIVE RWORD

Command: ON RECEIVE RWORD(OUTPUT[23]) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44, 38)
Translated to: hexadecimal 3843

Note: Only OUTPUT[23] is changed.
Characters remaining: "76543F"

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 3843 14,403 14,403 0011 1000 0100 0011

Register 24 03F5 1.013 1.013 0000 0011 1111 0101

MUCM Manual 7 Compiling 57

7

Compiling

QCOMPILE.EXE
QCOMPILE.EXE is an MS-DOS compatible program for compiling the MUCM configuration text file
into machine readable code. All MUCM configurations must be compiled before they can be down-
loaded into the MUCM. The downloading is done by another MS-DOS compatible program MUCM-
LOAD.EXE described in a later section of the manual.

The QCOMPILE command syntax is as follows:

QCOMPILE filename[.ext] [-Ofile2] [-Dmacro=string] [-L file3] [-S] [-W]

Where filename refers to the text file containing the source code for the MUCM.

The .ext is an optional extension to the filename. If no extension is included then .MUCM is assumed
by the compiler.

Options can appear in any order. Additional options may be displayed by using -? as an option.

-O option

The -O option is for specifying an output file other than filename.ucc. If the -O option is not used then
COMPILE will create the output file filename.ucc. If the -O option is used then COMPILE will create
an output file named file2. If an extension is desired for file2 it needs to be added since no extension is
assumed by the compiler.

-D option

The -D option is for specifying DEFINE macros at compile time. This is very useful for compiling one
MUCM configuration file for more than 1 port of the same MUCM module. The macro portion of the
-D option is the string inside of the MUCM configuration file that is to be found while string portion is
macro’s replacement. It is equivalent to Find what: macro Change to: string in DOS EDIT.

If, in the configuration file AMAZING.MUCM, the word Time has been used and Time needs to have a
value of 50 then the DOS command to compile AMAZING with the Time replacement is:

QCOMPILE AMAZING -DTime=50

If the compile completes with no errors then the output file AMAZING.UCC will be created. If more
than one DEFINE is needed at compile time then they can be added to the end of the COMPILE com-
mand as in:

58 Compiling 7 MUCM Manual

COMPILE AMAZING -DTime=50 -DPort=1 -DFlavor=strawberry

-L option

The -L option is for telling the compiler to also generate a 68000 source listing. The name of the DOS
text file is file3. If an extension is desired for file3 it needs to be added since no extension is assumed
by the compiler.

The 68000 source listing, file3, is a text file that can be read by your favorite text editor. If you have
any questions about the way the compiler generates code for the MUCM then you can use the -L op-
tion. Most users will not have a use for this option.

-S option

The -S option is for generating a list of the location of each declared variable. The variables are located
in the 6x file areas of the MUCM. Application 1 variables are located in file 384. Application 2 vari-
ables are located in file 640.

The variable list is displayed as a table, sorted by the order that the variables were declared. The table
has columns that show the varible’s byte address, register address, type, number of elements (if applica-
ble), number of bytes, and what thread they were assigned to.

-W option

The -W option disables warnings that indicate possible trouble but do not prohibit the program from
successfully compiling. Mostly used for disabling the warning "Program is too large" warnings on
large applications that use the optional large flash for application 2.

Compiler Errors
When the MUCM configuration file contains code that the compiler does not recognize, variables out
of range, code that is too long or any other error then the compiler generates an error listing. This list-
ing will have the compiler error number, the line number in the .MUCM file where the error occurred,
a copy of the line in question, and a description of the error. The listing will also summarize the total
number of errors detected.

The programmer can use this listing to correct problems in the MUCM configuration file. Since no
object code is generated if an error occurs during the compile, all errors must be repaired before a valid
object file can be made for downloading into the MUCM.

Debugging

For debugging purposes the user may want to store the error listing in a file in order to refer to it later.
This can be accomplished with the output redirection feature of DOS. For example:

COMPILE filename >error.lst

The text that normally would go to the screen will now appear in the text file error.lst .

A complete listing of the compiler errors appears in Chapter <Compiler error chapter> - <Compiler
error chapter>.

MUCM Manual 8 Downloading Compiled Code 59

8

Downloading Compiled Code

QLOAD.EXE
The program QLOAD.EXE is a WIN32 console program that will download compiled applications into
an MUCM via Modbus serial.

Niobrara MUCM Downloader 28Sep99 Copyright (c) 1998 NR&D.
Usage is:
 QLOAD <channel> <file>[.QCC] <port> [<drop>] switches
 where <channel> is the UCM application (1 or 2), <port>
 is a PC COM port name (for example COM1:)

Switches:
 -A Enable autostart for download program.
 -B Use Modbus ASCII (RTU is the default).
 -C<count> Allow serial retries (0 is default)
 -E Erase flash only. No download.
 -M<baud>,[E|O|N],[7|8],[1|2] Set port mode (COM).
 -N Don’t erase flash before loading.
 -R<reg> Use output register reg for run control.
 -S<reg> Move status registers to reg and reg+1
 -T<time> Reply timeout in seconds.
 -? Display this help message.

Examples:
The file MRPC.QCC is included with the MUCM files. This precompiled application provides routing
and protocol translations for the MUCM to make it act like an NR&D SPE4 with only two ports (refer
to www.niobrara.com, and find the QRPC manual for more information). This application is to be
loaded into Application 1 and it also prohibits any Applications from being loaded into Application 2.

To load the file from COM1 of a PC with a MU1 serial cable to one of the serial ports on the MUCM-
LE simply do the following:

1 Move the switches for Applications 1 and 2 to HALT.

2 Connect the MU1 to the PC’s com1 port and one of the serial ports on the MUCM.

60 Downloading Compiled Code 8 MUCM Manual

3 In Windows, go to:
>Start,Programs,Niobrara,RPC,RPCload

4 Click Browse, and find C:\Niobrara\firmware\mrpc.qrc

5 Use Modbus Serial, and set the defaults. Then click Start Download.

This will start loading the application and set it to automatically start on power cycles. MRPC is a large
application and takes several minutes to download via Modbus RTU serial at 9600 baud.

MUCM Manual 9 Connector Pinouts 61

9

Connector Pinouts

RS-232 port (Screw Terminal)

Figure 9-1 Port 1 and Post 2 Screw Terminal

Table 9-1 RS-232 Pinout

Pin 1 Pin 5

Pin Function Notes

1 TX Transmit

2 RX Receive

3 SG Signal Ground

4 RTS Push to Talk Request To Send

5 CTS CTS must be high to transmit

62 Connector Pinouts 9 MUCM Manual

RS-485 port (Screw Terminal)

Figure 9-2 Port 1 and Port 2 Screw Terminal

Table 9-2 RS-485 Pinout

For 2-wire RS-485 applications, Rx+ and Tx+ must be tied together outside the MUCM, and Rx- and
Tx- must also be tied together outside the MUCM.

Pin 1 Pin 5

Pin Function Notes

1 Tx+ Output from MUCM

2 Tx- Output from MUCM

3 Rx+ Input to MUCM

4 Rx- Input to MUCM

5 SG Signal Ground

MUCM Manual 10 Recommended Cabling 63

10

Recommended Cabling

Cabling required to configure an MUCM
Configuration files are downloaded from an MS-DOS personal computer into the MUCM. The factory
default configuration for the module is that all ports not running a user program are Modbus RTU, 9600
baud, 8 data bits, EVEN parity, 1 stop bit which may be used for downloading user programs or for
viewing and modifying MUCM registers. The correct cabling needs to be installed to connect the per-
sonal computer to an MUCM port.

MUCM RS-232 to personal computer cabling

A connection to the RS-232 port of the PC may be made to the RS-232 port of the module.

MUCM RS-232 to RS-232 PC DCE Port (9-pin) (MU1 Cable)

The Niobrara MU1 cable may be used for connecting the MUCM to a personal computer.

MUCM RS-232 to Modicon Quantum PLC port(9-pin) (MU2)
The Niobrara MU2 cable may be used to connect the MUCM RS-232 port to a Modicon Quantum PLC
port.

Screw Terminal DE9S (female)

1 2

2 3

3 5

4 4

5 6

7

8

64 Recommended Cabling 10 MUCM Manual

MUCM RS-232 to Quantum PLC (9-pin) (MU2 Cable)

MUCM RS-232 to 9-pin DTE
The Niobrara MU3 cable may be used to connect the MUCM RS-232 port to a 9-pin DCE device. This
cable gives the MUCM a standard PC type 9-pin male connector. The MU3 may be used in conjunc-
tion with the MU1 to connect two MUCM type screw terminal serial ports together. The MU3 may be
used with a Niobrara SC902 cable to connect an MUCM type screw terminal RS-232 serial port to a
SY/MAX type RS-422 port.

MUCM RS-232 to RS-232 DTE Port (9-pin) (MU3 Cable)

The Niobrara MU3 cable may be used for providing the MUCM with a 9-pin port that acts like a per-
sonal computer’s serial port.

MUCM RS-232 to 25-pin DTE
The Niobrara MU4 cable may be used to connect the MUCM RS-232 port to a 25-pin DCE device such
as a modem or a Cutler-Hammer MINT II.

Screw Terminal DE9P (male)

1 2

2 3

3 5

4 7

5 8

4

6

Screw Terminal DE9P (male)

1 3

2 2

3 5

4 7

5 8

4

6

MUCM Manual 10 Recommended Cabling 65

MUCM RS-232 to RS-232 DTE Port (25-pin) (MU4 Cable)

The Niobrara MU4 cable may be used to connect the MUCM to a modem.

MUCM RS-485/422 to SY/MAX 9-pin Port
When a non-isolated connection can be made between the MUCM and a SY/MAX pinout port, the fol-
lowing cable may be used.

MUCM RS-422/485 to SY/MAX pinout 9-pin port (MU7 Cable)

MUCM RS-485/422 as SY/MAX 9-pin Port
When it is desirable to connect an MUCM as a SY/MAX device, a Niobrara MU8 cable may be used.

MUCM RS-422/485 as SY/MAX pinout 9-pin port (MU8 Cable)

Screw Terminal DE25P (male)

1 2

2 3

3 7

4 4

5 5

6

8

20

Screw Terminal DE9P (male)

1 4

2 3

3 2

4 1

5 Cable Shield 9

5

6

7

8

Screw Terminal DE9P (male)

1 2

2 1

3 4

4 3

5 Cable Shield 9

66 Recommended Cabling 10 MUCM Manual

MUCM RS-232 to Modicon RJ-45 RS-232 (MU9)
The Niobrara MU9 cable may be used to connect the MUCM RS-232 port to a Modicon-style RJ-45
RS-232 port, such as on the MUCM.

MUCM RS-232 to Modicon RJ-45 (MU9 Cable)

MUCM RS-485/422 to Modicon RJ-45 RS-485 Port (MU10)
A Niobrara MU10 cable may be used to connect an MUCM to a Modicon-style RJ-45 RS-485 port.

MUCM RS-422/485 to Modicon RJ-45 RS-485 Port (MU10 Cable)

MUCM RS-485/422 to Modicon 9-Pin RS-485 Port (MU11)
A Niobrara MU11 cable may be used to connect an MUCM to a Modicon-style 9-pin RS-485 port.

MUCM RS-422/485 to Modicon 9-pin RS-485 Port (MU11 Cable)

Isolated Cabling to SY/MAX Port
The Niobrara DDC2I Isolated RS-232<>RS-422/485 converter provides an optically isolated connec-
tion from the MUCM to a SY/MAX pinout device. A Niobrara MU10 cable is used to connect the
RS-232 port on the MUCM to the RJ45 port on the DDC2I. A Niobrara DC1 cable is used to connect

Screw Terminal RJ−45

1 4

2 3

3 5

4 7

5 6

Screw Terminal RJ−45

1 2

2 1

3 3

4 6

5 Cable Shield 8

Screw Terminal DE9P (male)

1 2

2 7

3 1

4 6

5 Cable Shield 8

MUCM Manual 10 Recommended Cabling 67

the 9-pin RS-422 port on the DDC2I to the SY/MAX device. The DIP switches on the DDC2I should
be set for 4-Wire, Bias, and Termination. The DDC2I must be powered by a power supply.

The Niobrara MU3 and SC902 cables may also be used together to provide a non-isolated connection
between the MUCM and a SY/MAX port.

MUCM RS-232 to DDC2I RJ-45 (MU10 Cable)

Screw Terminal RJ−45

1 3

2 4

3 5

4 6

5 7

MUCM Manual A Downloading New Firmware 69

Appendix A

Downloading New Firmware

As new features and fixes are added to the MUCM, it may become necessary for the user to upgrade
their firmware to take advantage of these changes. The MUCM’s operating firmware is stored in a
FLASH memory and may be downloaded through serial Port 1 using an RS-232 cable and a special
program called FWLOAD.EXE

1 Locate the slide switch on the front of the module and move the switch to the LOAD (right) posi-
tion.

2 Connect the personal computer to Port 1 of the MUCM with an MU1 cable.

3 On the MUCM103 set the Port 1 mode selection switch to RS-232.

4 Run the program FWLOAD.EXE in the following manner:
In Windows, Click Start,Programs,Niobrara,MUCM,FWLOAD MUCM firmware

Choose the appropriate COM: port, then click Start Download.

5 After the completion of the download, the program will end.

6 Move the slide switch back to run, and it should be ready for service. It may be necessary to
download the Applications before returning the unit to service.

Note: If at any point during this procedure the download fails, it will be necessary to reboot the
MUCM before trying again.

It is now possible to load firmware through any serial port. This will eliminate the need for the user to
move the firmware Load/Run switch. A special version of the new firmware will be available that can
be installed as an Application. To accomplish this, simply QLOAD the firmware into the module. This
will replace any current Application. The firmware Application will then write the new firmware to
flash, and then self-terminate. Reload the original Application into the MUCM, and return the unit to
service.

70 Downloading New Firmware A MUCM Manual

Figure A-1 MUCM102 Front Panel

 1 3 Rx1 Tx1 Rn1 Pwr
 2 4 Rx2 Tx2 Rn2 ReadyTSX Momentum

Universal Communications
170 UCM 200 00

Niobrara R&D Corporation
9-30 VDC or AC

Tx Rx GND RTS CTS Tx+ Tx- Rx+ Rx- GND Run/Load

RS-232 RS-485

M
e
m

P
r
o
t

R
u
n

H
a
l
t

M
e
m

P
r
o
t

R
u
n

H
a
l
t

Run/Load Switch
 Left to Run
 Right to Load Firmware

MEM Clear Switch

MUCM Manual A Downloading New Firmware 71

Figure A-2 MUCM103 Front Panel

Run/Load Switch
 Left to Run
 Right to Load Firmware

MEM Clear Switch

 1 3 Rx1 Tx1 Rn1 Pwr
 2 4 Rx2 Tx2 Rn2 ReadyTSX Momentum

Universal Communications
170 UCM 200 00

Tx Rx GND RTS CTS Tx Rx GND RTS CTS

Run/Load

RS-232 RS-232
R
u
n

H
a
l
t

Niobrara R&D Corporation

Tx+ Tx- Rx+ Rx- GND Tx+ Tx- Rx+ Rx- GND

RS-485 RS-485

Mem
Prot

R
u
n

H
a
l
t

Mem
Prot

RS-485

RS-232

RS-485

RS-232

9-30
VDC/AC

1 2
Port 1 Mode
Selection Switch

Up selects RS-485
Down selects RS-232

MUCM Manual B ASCII Table 73

Appendix B

ASCII Table

Table B-1 lists the common ASCII Characters and their decimal and hex values.

74 ASCII Table B MUCM Manual

Table B-1 ASCII Table

Hex Dec Character Description Abrv Hex Dec Char. Hex Dec Char. Hex Dec Char.

00 0 [CTRL]@ Null NUL 20 32 SP 40 64 @ 60 96 ‘

01 1 [CTRL]a Start Heading SOH 21 33 ! 41 65 A 61 97 a

02 2 [CTRL]b Start of Text STX 22 34 " 42 66 B 62 98 b

03 3 [CTRL]c End Text ETX 23 35 # 43 67 C 63 99 c

04 4 [CTRL]d End Transmit EOT 24 36 $ 44 68 D 64 100 d

05 5 [CTRL]e Enquiry ENQ 25 37 % 45 69 E 65 101 e

06 6 [CTRL]f Acknowledge ACK 26 38 & 46 70 F 66 102 f

07 7 [CTRL]g Beep BEL 27 39 ’ 47 71 G 67 103 g

08 8 [CTRL]h Back space BS 28 40 (48 72 H 68 104 h

09 9 [CTRL]i Horizontal Tab HT 29 41) 49 73 I 69 105 i

0A 10 [CTRL]j Line Feed LF 2A 42 * 4A 74 J 6A 106 j

0B 11 [CTRL]k Vertical Tab VT 2B 43 + 4B 75 K 6B 107 k

0C 12 [CTRL]l Form Feed FF 2C 44 , 4C 76 L 6C 108 l

0D 13 [CTRL]m Carriage Return CR 2D 45 - 4D 77 M 6D 109 m

0E 14 [CTRL]n Shift Out SO 2E 46 . 4E 78 N 6E 110 n

0F 15 [CTRL]o Shift In SI 2F 47 / 4F 79 O 6F 111 o

10 16 [CTRL]p Device Link Esc DLE 30 48 0 50 80 P 70 112 p

11 17 [CTRL]q Dev Cont 1 X-ON DC1 31 49 1 51 81 Q 71 113 q

12 18 [CTRL]r Device Control 2 DC2 32 50 2 52 82 R 72 114 r

13 19 [CTRL]s Dev Cont 3 X-OFF DC3 33 51 3 53 83 S 73 115 s

14 20 [CTRL]t Device Control 4 DC4 34 52 4 54 84 T 74 116 t

15 21 [CTRL]u Negative Ack NAK 35 53 5 55 85 U 75 117 u

16 22 [CTRL]v Synchronous Idle SYN 36 54 6 56 86 V 76 118 v

17 23 [CTRL]w End Trans Block ETB 37 55 7 57 87 W 77 119 w

18 24 [CTRL]x Cancel CAN 38 56 8 58 88 X 78 120 x

19 25 [CTRL]y End Medium EM 39 57 9 59 89 Y 79 121 y

1A 26 [CTRL]z Substitute SUB 3A 58 : 5A 90 Z 7A 122 z

1B 27 [CTRL][Escape ESC 3B 59 ; 5B 91 [7B 123 {

1C 28 [CTRL]\ Cursor Right FS 3C 60 < 5C 92 \ 7C 124 |

1D 29 [CTRL]] Cursor Left GS 3D 61 = 5D 93] 7D 125 }

1E 30 [CTRL]^ Cursor Up RS 3E 62 > 5E 94 ^ 7E 126 ~

1F 31 [CTRL]_ Cursor Down US 3F 63 ? 5F 95 _ 7F 127 DEL

MUCM Manual C MUCM Language Syntax 75

Appendix C

MUCM Language Syntax

STATEMENTS
ON RECEIVE PORT <port number> <message description> GOTO <label>

ON RECEIVE PORT <port number> <message description> RETURN

ON CHANGE <variable> GOTO <label>

ON CHANGE <variable> RETURN

ON CHANGE <variable> & <expr> GOTO <label>

ON CHANGE <variable> & <expr> RETURN

ON TIMEOUT <expr> GOTO <label>

ON TIMEOUT <expr> RETURN

WAIT

GOTO <label>

GOSUB <label>

RETURN

IF <logical> THEN one or more statements followed by a newline

IF <logical> THEN one or more statements ELSE one or more statements, newline

IF <logical> THEN newline
one or more statements
ENDIF

76 MUCM Language Syntax C MUCM Manual

IF <logical> THEN newline
one or more statements
ELSE
one or more statements
ENDIF

WHILE <logical> one or more statements WEND

REPEAT one or more statements UNTIL <logical>

FOR <variable> = <expr> TO <expr>
one or more statements
NEXT

FOR <variable> = <expr> TO <expr> STEP <expr>
one or more statements
NEXT

FOR <variable> = <expr> DOWNTO <expr>
one or more statements
NEXT

FOR <variable> = <expr> DOWNTO <expr> STEP <expr>
one or more statements
NEXT

<variable> = <expr>

<variable>.<const> = <logical>

DELAY <expr>

STOP

TRANSMIT PORT <port number> <message description>

SET <variable>.<const>

READ FILE <file address> <variable>, <variable>, ...
WRITE FILE <file address> <variable>, <variable>, ...

CLEAR <variable>.<const>

TOGGLE <variable>.<const>

SET PORT <port number> BAUD <const>
SET PORT <port number> CAPITALIZE <const>
SET PORT <port number> DATA <const>
SET DEBUG <const>
SET PORT <port number> MODE <const>
SET PORT <port number> PARITY <const>

MUCM Manual C MUCM Language Syntax 77

SET PORT <port number> STOP <const>

DEFINE <macro>=<replacement string> newline

CONSTANTS <const> in descriptions above
decimal numbers 12345
signed numbers -123
hexadecimal constant x12ab
reserved constants:

EVEN
ODD
NONE

boolean constants:

TRUE
FALSE

EXPRESSIONS <NUMERIC expr> above

Operators:
 - unary negation
~ unary bitwise complement
* multiplication
/ division
% modulus
+ addition
- subtraction
<< left shift
>> right shift
& bitwise AND
| bitwise OR
^ bitwise XOR
() parenthesis

Precedence:
First, operands or sub expressions in parenthesis
Then unary negation - or complement ~
Then *, /, % left to right
Then +, - left to right
Then <<, >> left to right
Then & left to right
Then |, ^ left to right

Functions:
CRC(<expr>,<expr>,<expr>) {only used in message descriptions}
SUM(<expr>,<expr>,<expr>)
SUMW(<expr>,<expr>,<expr>)
LRC(<expr>,<expr>,<expr>)
LRCW(<expr>,<expr>,<expr>)
CRC16(<expr>,<expr>,<expr>)
 | | |
 | | +---- initial value usually 0 or -1
 | +----------- ending index
 +------------------ starting index

78 MUCM Language Syntax C MUCM Manual

 MIN(<expr>,<expr>)

 MAX(<expr>,<expr>)

 SWAP(<expr>) {reverses byte order of a word}

LOGICAL EXPRESSIONS <logical> above

Logical Operators:
AND
OR
XOR
NOT (unary)

Logical Functions:
CHANGED(<variable>)
CHANGED(<variable> & <expr>)
<variable>].<const> {constant bit number 1..16}

Relational Operators:
< less than
> greater than
<= less than or equal
>= greater than or equal
= equal
<> not equal

ARITHMETIC VARIABLES
$ the current index in a message description. Used in check sum calculations.

MESSAGE DESCRIPTIONS

Operator:
: concatenation

Literal string:
Enclosed in quotes.
\xx where xx is two digit hex number can be used for non-printables
\" can be used to embed a quotation mark
\\ can be used to embed a \
\a - Bell, same as "\07", makes printers and terminals beep
\b - Backspace, "\08", nondestructive backspace
\f - Form feed, "\0c", top of form, clears some terminal screens
\n - New line, "\0a"
\r - Return, "\0d"
\t - Tab, "\09", advances to tab stop
\v - Vertical tab, "\0b", used by some printers with VFU

Unlike ’C’, the MUCM compiler accepts the above sequences in upper or lower case. These are in
addition to the original MUCM escape sequence:

\xx - where each x is 0..9, A..F
and last but not least: \? - where ? is any character encodes that character
which is commonly used for: \\ - literal slash or \" - literal quote

MUCM Manual C MUCM Language Syntax 79

The MUCM compiler does not recognize the BASIC style """" to represent "\"".

Functions:
HEX(<expr>,<expr>)
DEC(<expr>,<expr>)
UNS(<expr>,<expr>)
OCT(<expr>,<expr>)
BCD(<expr>,<expr>)
 | |
 | +-width in characters
 +------expression in TRANSMIT

<variable> in ON RECEIVE to evaluate and place result in RXVARIABLE
(<expr>) in ON RECEIVE to generate and match string

RAW(<variable>,<expr>)
 | |
 | +- width in characters
 +-------- starting register number
BYTE(<expr>)
WORD(<expr>)
RWORD(<expr>)
 |

+---- expression in transmit
 <variable> in ON RECEIVE to evaluate and place result in RXVARIABLE
 (<expr>) in ON RECEIVE to generate and match string

TON(<expr>)
TOFF(<expr>)
 |
 +------ translation number 1..8

MUCM RUN TIME ERROR CODES
0 - Halted by clearing RUN bit
1 - Halted by STOP or RETURN statement
2 - Execution of invalid instruction (program corrupted, compiler bug)
3 - Division by zero
4 - No memory for ON CHANGE
5 - No memory for ON RECEIVE
6 - Illegal run time call (module firmware version doesn’t support compiler)
7 - Value out of bounds (register < 1 or > 2048, buffer index out of range,

SET parameter bad, output/input too long (> 256),
width specification < 0 or > 64)

8 - Checksum error in downloaded code

MUCM Reserved Word List
The following lists of words are reserved by the MUCM language. These words may not be used for
define macro names or labels.

80 MUCM Language Syntax C MUCM Manual

AND FALSE OFFSET TCP

BCD FILE ON THEN

BAUD FLASH OR THREAD

BYTE FLOAT OUTPUT TIMEOUT

CAPITALIZE FOR PARITY TIMER

CASE FULL PORT TO

CHANGE FUNCTION PPP TOGGLE

CHANGED GOSUB PPPUSERNAME TRANSMIT

CLEAR GOTO PPPPASSWORD TRUE

CLOSE HALF PPPHANGUP TRUNC

CONNECT HEX RAW UCM

CRC IDEC READ UDP

CRC16 IF REALTIME UNS

CRCAB INPUT RECEIVE UNSIGNED

CRCBOB LENGTH RETURN UNTIL

CRCDNP LIGHT REPEAT VARIABLE

CTS LISTEN RNIM WAIT

DATA LONG RTS WEND

DEBUG LRC RTU WHILE

DEC LRCW RWORD WORD

DECLARE MAX SET WRITE

DEFINE MIN SIGNED XOR

DELAY MODE SOCKET UNTIL

DOWNTO MOVE SOCKETSTATE VARIABLE

DUPLEX MULTIDROP STEP WAIT

ELSE NAGLE STOP WEND

ENDIF NEXT STRING WHILE

ENDFUNC NOT SUM WORD

ENDSWITCH NONE SUMW WRITE

ERASE OCT SWAP XOR

EVEN ODD SWITCH

EXPIRED OFF SYMAX

MUCM Manual D Modsoft Traffic Cop Configuration 81

Appendix D

Modsoft Traffic Cop Configuration

MUCM
The register configuration of the MUCM is governed by its entry in the Traffic Cop description and
characteristic file: M1TCOP.SYS. This file is typically located in the \MODSOFT\RUNTIME direc-
tory.

NOTE: Pay special notice to the warning about editing this file with editors
that do not support line width greater than 255 characters.
DO NOT use MS-DOS EDIT on this file!

The entry for the MUCM follows the form of a Momentum I/O module with 64 bytes of input and 64
bytes of output. The standard entry used in Modsoft V2.4 is shown below:

MUCM ,214,0,64,64,NR&D Universal Comm,0,M00C5,0000,0000,00
123456789012345678901234567890123456789012345678901234567890123

The fields are comma separated.

The first 10 characters are the Name of the module.

The 214 is the next entry in the list of available devices. If you are adding this line, choose the next
free number in the list that is between 104 and 300.

The 0 in character position 16 indicates that other modules may be inserted in this drop.

The 64 in character positions 18 and 19 set the number of INPUT bytes. A value of 64 provides 32
WORDS of input (3x registers)

The 64 in character positions 21 and 22 set the number of OUTPUT bytes. A value of 64 provides
32 WORDS of output (4x registers)

The next field is the text description (19 characters max.).

The 0 in position 40 determines that the module is a discrete module and may take 0x, 1x, 3x, 4x
references.

The module ID is M00C5.

The rest of the entry follows the typical I/O module entry with no additional parameters.

82 Modsoft Traffic Cop Configuration D MUCM Manual

NOTE: If the entry in the Traffic Cop configuration file is altered, all MUCMs in the PLC system will
use this entry. Also, special care will be needed during future updates of Modsoft to carry the altered
setting to the new revision.

MUCM Manual E Concept 2.1 (or later) Configuration 83

Appendix E

Concept 2.1 (or later) Configuration

The register configuration of each module is controlled by the ModConnect tool in Concept. The
ModConnect tool adds devices to Concept that were not originally available when Concept was devel-
oped. To accomplish this, the user must copy a .mdc file to the \Concept directory. The .mdc file for
the MUCM is available on the website. Download the cncept21.zip file, and extract either the
Nrd_w95.mdc, or the Nrd_wnt.mdc file to the \Concept directory.

Next open the ModConnect tool from the Start menu. From the file menu, choose Open Installation
File. The appropriate .mdc file should appear in the list of files from which to choose. Click the .mdc
file, then click OK. The Select Module dialogue box will appear, allowing the user to choose the
MUCM. Next, click Add Module. Concept now has all the information needed to configure a Momen-
tum PLC for the MUCM.

MUCM Manual F NR&D on the Internet 85

Appendix F

NR&D on the Internet

Niobrara offers product information, firmware and software upgrades, user manuals,
and technical support via the Internet at:

http://www.niobrara.com

For technical support questions e-mail: techsupport@niobrara.com

For marketing questions e-mail: marketing@niobrara.com

For direct anonymous ftp connect to ftp.niobrara.com

MUCM Manual G Memory Map 87

Appendix G

Memory Map

The memory of the MUCM is divided into separate areas including PLC Rack Input (3x) 16-bit regis-
ter, PLC Rack Output (4x) 16-bit registers, and four files (6x).

PLC INPUTS (3x)
The MUCM has 60 implemented 3x registers. The first 32 are available to the Momentum PLC
through the backplane and are read-only to the PLC. Inputs 1 through 4 default to the status and line
number displays for Applications 1 and 2. The INPUT registers are arranged in Modicon bit order with
the bits 1-16 in MSB-LSB.

88 Memory Map G MUCM Manual

Table G-1 INPUT Registers (3x)

PLC OUTPUTS (4x)
The MUCM has 2048 implemented 4x registers. The first 32 are available to the Quantum PLC
through the backplane and are read/write from the PLC. The INPUT and OUTPUT registers are ar-
ranged in Modicon bit order with the bits 1-16 in MSB-LSB.

MUCM Register Description Bit Description

1 App. 1 Status

2 App. 1 Line
Number

This is the default location for these status registers.
The location of the Status and Line number
registers for Application 1 is controlled by
OUTPUT[42]

3 App. 2 Status

4 App. 2 Line
Number

This is the default location for these status registers.
The location of the Status and Line number
registers for Application 2 is controlled by
OUTPUT[43]

5-32 Rack Inputs PLC Read only.

33 Reserved

34 Reserved

35 Reserved

36 Read Switch State bit 16 = Halt 1 (0=off, 1=on)
bit 15 = Prot 1
bit 14 = Halt 2
bit 13 = Prot 2
bit 11 = RS-485/RS-232 1 (0=232, 1=485)
bit 10 = RS-485/RS-232 2 (0=232, 1=485)

37 Read CTS State bit 16 = CTS Port 1 (0=off, 1=on)
bit 15 = CTS Port 2

38 MSW

39

40

Ethernet Port
MAC Address

LSW

41 App 1, Thread 1

42 App 1, Thread 2

43 App 1, Thread 3

44 App 1, Thread 4

45 App 1, Thread 5

46 App 1, Thread 6

47 App 1, Thread 7

48 App 1, Thread 8

Last line number entered by each Application
thread. This is a convenient debugging tool which
allows a view of what each thread is doing (thus,
what it is waiting for)

51 App 2, Thread 1

52 App 2, Thread 2

53 App 2, Thread 3

54 App 2, Thread 4

55 App 2, Thread 5

56 App 2, Thread 6

57 App 2, Thread 7

58 App 2, Thread 8

MUCM Manual G Memory Map 89

Table G-2 OUTPUT Registers (4x)

90 Memory Map G MUCM Manual

MUCM Register Description Bit Description

1-32 Rack Outputs MUCM Read only.

33 Default Run Mask

34 Pointer to Run Mask

35 Auto-Start Mask Copied to Run Mask at boot

36 Read Switch State bit 16 = Halt 1 (0=off, 1=on)
bit 15 = Prot 1
bit 14 = Halt 2
bit 13 = Prot 2
bit 11 = Port 1 in RS-485
bit 10 = Port 2 in RS-485

37 Read CTS State bit 16 = CTS Port 1 (0=off, 1=on)
bit 15 = CTS Port 2

38 High Byte = Port 1 control
Low Byte = Modbus Drop of Port 1

bit 1 = parity (0=even, 1=none)
bits 3-8 = baud rate:
0 = 9600
15 = 19200
16 = 38400

39 High Byte = Port 2 control
Low Byte = Modbus Drop of Port 2

bit 1 = parity (0=even, 1=none)
bits 3-8 = baud rate:
0 = 9600
15 = 19200
16 = 38400

40 Rack Comms Bit 16 = Rack Comms Active

41 Modbus Drop of E-net Port

42 Pointer to Application 1 Status
Register

43 Pointer to Application 2 Status
Register

44 Reserved

45 Reserved

46 IP Address (one byte/reg.)

47 IP Address

48 IP Address

49 IP Address

50 Subnet Mask (one byte/reg)

51 Subnet Mask

52 Subnet Mask

53 Subnet Mask

54 Default Gate (one byte/reg)

55 Default Gate

56 Default Gate

57 Default Gate

58 through 61 Reserved

62 TCP Backstep

63 Modbus/TCP Server Port Number

64 Web Server Port Number

65 Quiet Timeout in seconds

MUCM Manual G Memory Map 91

MUCM Register Description Bit Description

66 through 68 Reserved

69 LED bit map bit 16 = Light 3(0=off, 1=on)
bit 15 = Light 4
bit 14 = Light 5 (for MUCM, Ready LED)
bit 13 = Light 6
bit 12 = Light 7 (fpr MUCM, App. 1 Run)
bit 11 = Light 8 (for MUCM, App. 2 Run)
bit 10 = Light 9 (for MUCM, Light 1)
bit 9 = Light 10 (for MUCM, Light 2)
bit 8 = Fault LED
bit 7 = Active LED
bit 6 = Ready LED
bit 5 = Run LED
bit 4 = App. 1 Run
bit 3 = App. 2 Run
bit 2 = Light 1
bit 1 = Light 2

70 Real-Time Clock bit 1 = RTC support (1=support of RTC)
bit 2 = RTC chip present (1=chip present)
bit 3 = Status (0=reliable, 1=unreliable)

71 RTC Seconds

72 RTC Minutes

73 RTC Hours

74 RTC Day of Month

75 RTC Month

76 RTC Year

77 RTC Day of Week

78 Register 1 of UNIX time UNIX time represents the number of seconds since the
beginning of 1970.

79 Register 2 of UNIX time

MUCM Manual Index 93

Index

A

AND, 21, 76
APPLICATION, 45

B

BAUD, 32, 74
BCD, 23, 41, 49, 53, 77
BYTE, 23, 41, 54, 77

C

CAPITALIZE, 18, 25, 32, 74
CHANGE, 73. See also ON CHANGE
CHANGED, 45, 76
CLEAR, 26, 74
CRC, 20, 39, 75
CRCAB, 20
CRCBOB, 20, 39
CRCDNP, 20, 40
CRC16, 20, 39, 75
CTS, 46

D

DATA, 33, 34, 74
DEBUG, 18, 33, 74
DEC, 23, 41, 48, 50, 77
DEFINE, 28, 57, 75
DELAY, 28, 74
DOWNTO, 29, 74

E

ELSE, 30, 73
ENDIF, 30, 73
ERROR Codes, 77
EVEN, 18, 34, 75
EXPIRED, 29

F

FALSE, 17, 18, 25, 32, 75
FOR, 25, 29, 74
Functions, 77

G

GOSUB, 20, 29, 73
GOTO, 20, 29, 31, 73

H

HEX, 23, 42, 47, 50, 77
HEXLC, 42

I

IDEC, 23, 42
IF, 25

L

LIGHT, 33
Literal Strings, 76
LONG, 43
LRC, 20, 40, 75
LRCW, 20, 40, 75

M

MAX, 20, 45, 76
Message Assignments, 24
MIN, 20, 45, 76
MODE, 33, 74

N

NAGLE, 34
NEXT, 29, 74
NONE, 17, 18, 34, 75
NOT, 21, 76

94 Index MUCM Manual

O

OCT, 23, 43, 48, 52, 77
ODD, 17, 18, 34, 75
Operator, 76
OR, 21, 76

P

PARITY, 18, 34, 74
Precedence of operators, 19

R

RAW, 23, 43, 53, 77
READ, 74
READ PROGRAM, 31
RECEIVE, 73. See also ON RECEIVE
REPEAT, 25, 32, 74
Reserved Words, 77
RETURN, 29. See also GOSUB
RTS, 46
Run Time Error Registers, 19
RWORD, 23, 43, 55, 77

S

SET, 32, 74
SET LIGHT, 33
STEP, 29. See also FOR
STOP, 35
SUM, 20, 40, 75
SUMW, 20, 40, 75
SWAP, 20, 45, 76

T

THEN, 30. See also IF
THREAD, 46
TIMEOUT, 73. See also ON TIMEOUT
TO, 29. See also FOR
TOFF, 44, 77
TOGGLE, 36, 74
TOGGLE LIGHT, 36
TON, 44, 77
TRANSMIT, 23, 36, 47, 74
TRUE, 17, 18, 32, 75

U

UNS, 23, 44, 48, 51, 77
UNTIL, 74. See also REPEAT

V

Variable Length Fields, 23

W

WAIT, 31, 36, 73
WEND, 36. See also WHILE
WHILE, 25, 36, 74
WORD, 23, 45, 55, 77
WRITE, 74
WRITE PROGRAM, 36

X

XOR, 19, 76

<

<const>, 17
<expr>, 19
<label>, 20
<logical>, 20
<message description>, 22
<string>, 22

