
QUCM Manual

QUCM
Installation and Programming Manual

This Manual describes the QUCM Universal Communication Module, its uses and set up. It also describes the use
of the programming software and compiler.

Effective: 12 May, 2009

Niobrara Research & Development Corporation
P.O. Box 3418 Joplin, MO 64803 USA

Telephone: (800) 235-6723 or (417) 624-8918
Facsimile: (417) 624-8920
Internet: www.niobrara.com

Modicon, TSX Momentum Automation, TSX Quantum Automation, Modbus, Modbus Plus are regis-
tered trademarks of Schneider Automation.

SY/MAX and Square D are registered trademarks of Square D Company.

PowerLogic is a trademark of Square D Company.

Allen-Bradley, A-B, and Data Highway are trademarks of Allen-Bradley Company.

SmartBob is a trademark of BinMaster, a division of Garner Industries.

Subject to change without notice.

© Niobrara Research & Development Corporation 1998, - 2004. All Rights Reserved.

 3

Contents

1 QUCM ..9

Introduction ..9
Specifications ...9
Real-Time Clock (RTC) ...10
LED Indicators and Descriptions ...11
Module Installation ...14
Serial Installation ..14
Ethernet Installation ...14
PLC Configuration ...14
Software Installation ...14

2 QUCM Programming Overview...17

3 QUCM Language Definitions..19

Constant Data Representation - <const> ..19
Decimal Integers ...19
Signed Integers ..20
Hexadecimal Integers ..20
Boolean Constants ...20
Floating Point Numbers ..20
Reserved Constants ...20

Variable Data Representation ...20
Arithmetic Expressions - <expr> ...21

Numeric Operators ..21
Precedence of Operators..21
Numeric Functions ..22

Labels - <label> ..22
Logical Expressions - <logical> ...22

Logical Operators ..23
Relational Operators ..23

Functions - <function> ...23
Message Descriptions - <message description> ...24

Literal String - <string> ..24
String Variables ...24
Message Functions ..24

Variable Fields ...25
Transmit usage of Variable length ..25

4

ON RECEIVE usage of Variable length ...26
Message Assignments ..26

4 QUCM Language Statements...27

Assignments ...27
variable[<expr>]=<expr> ..27
variable[<expr>].<const>=<logical> ..27
<variable>.(<expr>)=<logical>...28
<variable>.<variable>=<logical> ...28
<variable>=<message description> ..28

BAUD ...28
CAPITALIZE ...28
CLEAR ..28
CLOSE ...28
CONNECT ...28
DATA ...29
DEBUG ..29
DECLARE..29
DEFINE ..30
DELAY ..30
DUPLEX ..30
ERASE ...30
ERASE FLASH ..31
EXPIRED ...31
FOR...NEXT...31
FLUSH ...32
GOSUB...RETURN ...32
GOTO ...32
IF...THEN...ELSE...ENDIF ...32
LIGHT ..32
LISTEN ..32
MOVE ..33
MULTIDROP ...33
ON CHANGE...33
ON <expression> ..33
ON RECEIVE PORT x ..33
ON RECEIVE SOCKET x ...33
ON TIMEOUT ...34
PARITY..34
READ FILE ..34
READ FLASH ...35
REPEAT...UNTIL ..35
RETURN ..35
SET ...35

SET DEBUG <const> ...36
SET LIGHT <exp> <const> ...36
SET PORT x BAUD <const> ...36
SET PORT x CAPITALIZE <const>SET SOCKET x CAPITALIZE <const> ...36
SET PORT x CTS <const> ...36
SET PORT x DATA <const> ...36
SET PORT x DUPLEX <const> ...36
SET MODE <const> ...36
SET SOCKET <socket> NAGLE <const> ...37
SET PORT x MULTIDROP <const> ...37
SET PORT x RTS <const> ...37

5

SET PORT x DATA <const> ..37
SET PORT x PARITY <const> ..38
SET PORT x PPPUSERNAME <string const|string variable>38
SET PORT x PPPPASSWORD <string const|string variable>38
SET PORT x PPPHANGUP ...38
SET PORT x STOP <const> ...38
SET TIMER <variable><const> ...38

SET (bit) ...38
SOCKETSTATE ..38
STOP ..38
STOP (BITS) ..38
SWITCH...CASE...ENDSWITCH ...38
TOGGLE ..39
TOGGLE LIGHT ...39
TRANSMIT..39
WAIT ..39
WHILE...WEND ..39
WRITE FILE ..40
WRITE FLASH ..40

5 QUCM Language Functions..43

Checksum Functions ..43
CRC ...43
CRC16 ...43
CRCAB ...43
CRCBOB...43
CRCDNP ...44
LRC ...44
LRCW ...44
SUM ..44
SUMW ..44

Message Description Functions ..45
BCD - Binary Coded Decimal conversion ..45
BYTE - Single (lower) byte conversion ..45
DEC - Decimal conversion ...45
HEX - Hexadecimal conversion ..46
HEXLC - Lower Case Hexadecimal conversion ..46
IDEC conversion ...46
LONG ..47
OCT - Octal conversion ..47
RAW - Raw register conversion ...47
RWORD ..47
TON - Translate on ...48
TOFF - Translate off ...48
UNS - Unsigned decimal conversion ..48
WORD...49

Other Functions ..49
APPLICATION...49
CHANGED ...49
MAX..49
MIN ...49
SWAP ..49
THREAD...50
RTS..50
CTSx..50

6

6 Examples...51

TRANSMIT message function with register references ..51
TRANSMIT HEX ...51
TRANSMIT DEC ...52
TRANSMIT UNS ...52
TRANSMIT OCT ...52
TRANSMIT BCD ...53

ON RECEIVE message functions with register references ...53
ON RECEIVE HEX ..54
ON RECEIVE DEC ..54
ON RECEIVE UNS ..55
ON RECEIVE OCT ..56
ON RECEIVE BCD ..57
ON RECEIVE RAW ...57
ON RECEIVE BYTE ..58
ON RECEIVE WORD ..59
ON RECEIVE RWORD ...59

7 Compiling ...61

QCOMPILE.EXE ...61
-O option ...61
-D option ...61
-L option ..62
-S option ..62
-W option...62

Compiler Errors ..62
Debugging ...62

8 Downloading Compiled Code..63

QLOAD.EXE ...63
Example: ...64

9 Connector Pinouts...67

RS-232 ports on QUCM (RJ45 socket) ..67
RS-422/485 ports on QUCM (RJ45 socket) ...68
10BaseT (Twisted Pair) Ethernet port on QUCM (RJ45 socket)68

10 Recommended Cabling..71

Cabling required to configure a QUCM ...71
QUCM RS-232 to personal computer cabling ..71

QUCM RS-232 to 9-pin Modicon RS-232 ...71
QUCM RS-232 to 9-pin DTE ..72
QUCM RS-232 to 25-pin DTE ..72
QUCM RS-485/422 to SY/MAX 9-pin Port ..73
QUCM RS-485/422 as a SY/MAX 9-pin Port ...73
Isolated Cabling to SY/MAX Port ...74

7

Appendix A Downloading New Firmware .. 75

QUCM ..75
QLOAD Operation ..75
FWLOAD32 Operation ...76

Appendix B ASCII Table .. 81

Appendix C QUCM Language Syntax ... 85

STATEMENTS ..85
CONSTANTS <const> in descriptions above..87
EXPRESSIONS <NUMERIC expr> above ...87

Operators: ..87
Precedence: ..87
Functions: ..87

LOGICAL EXPRESSIONS <logical> above ..88
Logical Operators: ...88
Logical Functions: ...88
Relational Operators: ...88

ARITHMETIC VARIABLES ..88
MESSAGE DESCRIPTIONS ..88

Operator: ..88
Literal string: ...88
Functions: ..89

QUCM RUN TIME ERROR CODES ...89
QUCM Reserved Word List ...89

Appendix D Modsoft Traffic Cop Configuration 91

QUCM ..91

Appendix E Concept 2.1 (or later) Configuration 93

Appendix F NR&D on the Internet ... 95

Appendix G Memory Map ... 97

PLC INPUTS (3x) ..97
PLC OUTPUTS (4x) ..98

Figures

Figure 1-1 QUCM-SE Front Panel ...12

Figure 1-2 QUCM-OE Front Panel ..13

Figure 1-3 Mounting the QUCM on the Backplane ...14

Figure 1-4 QUCM Setup Opening Window ...15

8

Figure 1-5 QUCM Setup License Agreement ..15

Figure 1-6 QUCM Setup Folder Selection ...15

Figure 1-7 QUCM Setup Finish Screen ...16

Figure 8-1 Ethernet QLOAD ..63

Figure 8-2 Serial QLOAD ..64

Figure 9-1 Ports 1 and 2 RJ45 ..67

Figure 9-2 Ports 1 and 2 RJ45 ..68

Figure 9-3 Ethernet Port RJ45 ..69

Tables

Table 3-1 Constant Data Types ..19

Table 3-2 Numeric Operators ...21

Table 3-3 Checksum Functions ..22

Table 3-4 Additional Functions ..22

Table 3-5 Logical Operators ...23

Table 3-6 Relational Operators ..23

Table 3-7 Message Functions ...25

Table 4-1 Referencing Bits in Different Variable Types ...28

Table 4-2 Declared Variable Types ..30

Table 4-3 Const values ...31

Table 4-4 Well Known TCP Port Numbers ...33

Table 4-5 QUCM Internal File List ..34

Table 4-6 QUCM Internal File List ..35

Table 4-7 QUCM Internal File List ..40

Table 4-8 QUCM Internal File List ..41

Table 9-1 RS-232 Pinout ..67

Table 9-2 RS-485 Pinout ..68

Table 9-3 10BaseT Pinout ..69

Table B-1 ASCII Table ..82

Table G-1 INPUT Registers (3x) ...98

Table G-2 OUTPUT Registers (4x) ...99

QUCM Manual 1 QUCM 9

1

QUCM

Introduction
The Niobrara QUCM is a user programmable communication module for a Modicon TSX Quantum
Automation Series PLC. The user may write Applications to be loaded into the QUCM to communi-
cate with serial and/or Ethernet devices. Applications are written as a text file in a "BASIC" like lan-
guage developed specifically for writing serial protocols. The Applications are compiled and down-
loaded into FLASH memory in the QUCM. Up to two Applications may be loaded in the QUCM and
run at the same time. Each Application has access to both serial ports, the Ethernet port (optional), and
the Quantum Backplane registers. Each Application may have up to 8 parallel tasking threads. Pre-
written applications are also offered to cover some of the more common protocols including Modbus
RTU and ASCII, SY/MAX, SY/MAX Net-to-Net, POWERLOGIC PNIM, RNIM Master and Slave,
and IDEC. The QUCM interfaces to the Quantum PLC as an I/O module and is thus permitted to be
used in the Local (CPU rack), Remote (RIO), or Distributed (DIO) I/O racks1. The QUCM is Traffic
Copped as an analog module with up to 32 Input (3xxxxx) registers and 32 Output (4xxxxx) registers,
or as a discrete module with up to 512 input bits (1xxxxx) and 512 coils (0xxxxx).

The QUCM is available in two models, the QUCM-O with two switch selectable RS-232/RS-485 serial
ports and the QUCM-OE with two switch selectable RS-232/RS-485 ports and a 10BaseT Ethernet
port.

Specifications
Mounting Requirements

One slot of Quantum backplane.

Maximum Backplane Addressing
32 Words In
32 words Out

Current Draw on Quantum Rack power supply
550 mA max. (350mA typical)

Operating Temperature
0 to 60 degrees C operating. -40 to 80 degrees C storage.

1 The Local and RIO racks will support the full 32 words In and 32 words Out. The DIO interface will only support a maximum
of 30 words In and 32 words Out. The GCNFTCOP.SYS file for Modsoft must be modified for use with the DIO. See Appen-
dix D on page 91 for more information.

10 QUCM 1 QUCM Manual

Humidity Rating
up to 90% noncondensing

Pressure Altitude
-200 to +10,000 feet MSL

Serial Communication Ports
Two 8-pin RJ45 connectors. User selectable baud rates up to 19.2Kbaud.
Front-panel switch selectable RS-232/RS-485 driver mode (Ports are inde-
pendently selectable).

Ethernet Communication Port
10BaseT 8-pin RJ45 connector. Modbus/TCP (TCP/IP), SY/MAX 802.3 and
other user configured protocols.

Memory
2 Application FLASH Areas with 128K bytes of Program size each with appli-
cation 2 having a possible 256K bytes
32K bytes of Non-volatile Variable RAM memory
8K bytes of Application accessible FLASH
Two 128K bytes of Non-Volatile RAM memory as files.

Indicator lights
24 LEDs:

Green Active, Ready, and Run
Green E-net Collision, E-net Link, E-net Transmit, and E-net Receive
Red Fault
Green User lights 1 through 10
Green Application 1 RUN, and Application 2 RUN
Green Port 1 Transmit and Receive
Green Port 2 Transmit and Receive

Physical Dimensions
Wt. :2 lb. max
W: 1.59 in.
H: 9.84 in.
D: 4.09 in.

Real-Time Clock (RTC)
All QUCM’s with a hardware revision of 1.2 or higher have onboard a real-time clock, or RTC. The
RTC’s data is displayed in Output registers 70 through 77. All values in registers 71 through 77 should
be read as a decimal value. Register 71 displays the seconds, 72 displays the minutes, 73 displays the
hours in a 24-hour format, 74 displays day of the month, 75 displays the month of the year, 76 displays
the year, and 77 displays the day of the week. The day of the week is displayed as a number from 0 to
6, 0 being Sunday.

Register 70 displays the status of the data contained in these registers. A hex value of E000 indicates
unreliable data. A value of C000 indicates reliable data. The data will be unreliable the first time the
module is powered up, and each time the voltage supplied to the RTC drops below an acceptable level.
The values in registers must then be set to the desired values, and a hex value of C5C5 should be writ-
ten to register 70. This tells the RTC that the data has been set, and can now be treated as reliable.

QUCM Manual 1 QUCM 11

LED Indicators and Descriptions

Fault
Active
Ready

Run

Col

Lnk
TXE

RXE

1
2

3

5

RN1
TX1

RX1

4

6
7

8

10

RN2
TX2

RX2

9

LED Color Indication when ON

Fault Red Module Fault

Active Green Quantum Bus communication is present

Ready Green QUCM has passed internal self checks

Run Green Quantum PLC is in RUN

Col Green Ethernet Collision

Lnk Green Ethernet Link Active

TXE Green Ethernet Transmit

RXE Green Ethernet Receive

1 - 10 Green User Lights 1 through 10

RN1 Green Application 1 RUN

TX1 Green Port 1 Transmit

RX1 Green Port 1 Receive

RN2 Green Application 2 RUN

TX2 Green Port 2 Transmit

RX2 Green Port 2 Receive

12 QUCM 1 QUCM Manual

Figure 1-1 QUCM-SE Front Panel

140
QUCM
UNIVERSAL COMMS

Removable Door

LED Area

Module Number
Module Description
Color Code

Application 1 Switch

Application 2 Switch

RS-232 Port 1

RS-232 Port 2

10BaseT Ethernet Port

Up for Memory Protect

Down for Halt
Middle for Run

Active
Ready
Run

Col
Lnk
TXE
RXE

1
2
3
4
5

RN1
TX1
RX1

6
7
8
9

10
RN2
TX2
RX2

Fault

(QUCM-SE only)

Up for Memory Protect

Down for Halt
Middle for Run

QUCM Manual 1 QUCM 13

Figure 1-2 QUCM-OE Front Panel

140
QUCM
UNIVERSAL COMMS

Removable Door

LED Area

Module Number
Module Description
Color Code

Application 1 Switch

Application 2 Switch

Serial Port 1

Serial Port 2

10BaseT Ethernet Port

Left for Memory Protect

Right for Halt
Middle for Run

Active
Ready
Run

Col
Lnk
TXE
RXE

1
2
3
4
5

RN1
TX1
RX1

6
7
8
9

10
RN2
TX2
RX2

Fault

(QUCM-OE only)

Left for Memory Protect

Right for Halt
Middle for Run

RS-485/RS-232
Switch for Port 1

RS-485/RS-232
Switch for Port 2

14 QUCM 1 QUCM Manual

Module Installation
Note: Like all Quantum modules, the QUCM may be hot swapped. It is not necessary to remove
power to the rack to remove or install the QUCM.

1 Mount the QUCM at an angle onto the two hooks near the top of the backplane slot. Rotate the
module down to make electrical contact to the backplane. Secure the screw at the bottom of the
module. The maximum tightening torque for this screw is 2-4 in-lbs.

2 With power applied to the rack, all LEDs should strobe and when finished, the green Ready LED
should illuminate and remain lit. This indicates that the QUCM has passed its internal self checks
and is ready.

3 If the QUCM’s slot is properly rack addressed by the Quantum, then the green Active LED should
illuminate.

4 The green RUN LED will light if the slot is rack addressed and the Quantum CPU is in RUN.

Figure 1-3 Mounting the QUCM on the Backplane

Serial Installation
The QUCM connects to external RS-232 or RS-485 devices through its Port 1 or Port 2 RJ45 connec-
tors.

Ethernet Installation
QUCM-OE units come with a 10BaseT Ethernet port. This port is to be connected to an Ethernet HUB
using a standard CAT-5 twisted pair cable.

PLC Configuration
The number of addressed backplane registers needed by the QUCM completely depends upon the user
applications. A maximum of 32 words of Input and 32 words of Output may be assigned to it by the
Quantum CPU. This assignment is accessed like other I/O modules through the Configure, Quantum
I/O screen in Modsoft, Concept, or other programming software. These registers are solely configured
by the user’s applications and have no set meanings.

Software Installation
All files required to program and load the QUCM are located within the QUCM_SETUP.EXE file.
This file is located on the CD provided with the QUCM, or at www.niobrara.com/html/httpfiles.html.
From either of these locations, locate the Install Software pulldown menu, and select the QUCM from
the list. When the setup program starts, the following screen will be displayed:

Module
Hooks

I/O Bus
Connector

QUCM Manual 1 QUCM 15

Figure 1-4 QUCM Setup Opening Window

Contact information for Niobrara will be displayed, along with the option to continue or close. Click
the Install button. The following screen will appear:

Figure 1-5 QUCM Setup License Agreement

This is the license agreement for use of Niobrara software. Click I Agree to continue. The following
screen appears:

Figure 1-6 QUCM Setup Folder Selection

16 QUCM 1 QUCM Manual

This is the point at which the user selects the folder into which all Niobrara files will be placed. Choose
an appropriate location, or just select the default location, then click OK. The setup program will then
extract all of the QUCM files, and place them in the selected folder. The following screen will then
appear:

Figure 1-7 QUCM Setup Finish Screen

Click OK to exit the setup software.

QUCM Manual 2 QUCM Programming Overview 17

2

QUCM Programming Overview

The user programs that run in the QUCM are known as Applications. Applications are written in the
QUCM language with a text editor, compiled with the QCOMPILE program, and downloaded into the
QUCM to run. The QUCM allows up to two Applications to run at the same time. Each Application
has its own separate memory for variables as well as shared access to the PLC Rack I/O interface via
the INPUT[x] registers and the OUTPUT[x] registers. These I/O words are the only directly common
memory connection between the two Applications although Applications may share data through RAM
files that are accessible using the READ FILE and WRITE FILE structures. Applications may be di-
vided into multiple THREADs which multi-task within the Application. Up to eight THREADs may be
written into an Application.

Each Application has full access to both serial ports, the optional Ethernet port, and as mentioned above
the PLC I/O registers. Communication messages are sent from an Application using the TRANSMIT
statement and are received with the ON RECEIVE statement. Built-in functions for calculating check-
sums are provided.

The general outline for a QUCM application is shown below:

{Comments}

DECLARE global_variables

FUNCTIONS

{general startup configuration code}

THREAD 1

DECLARE local_variables

{thread 1 application code as an endless loop}

THREAD 2

DECLARE local_variables

{thread 2 application code as an endless loop}

18 QUCM Programming Overview 2 QUCM Manual

Application code located before thread 1 is processed first as the application starts and then all threads
start at the same time. Declares located before thread 1 are global and accessible in any of the threads.
Declares within a thread are local only to that thread.

Warning: Applications that serve up web pages from the Quantum backplane may be in violation of
the following patents:

1 Patent no. 5,805,442

2 Patent no. 5,975,737

3 Patent no. 5,982,362

4 Patent no. 6,061,603

5 Patent no. 6,282,454

If you are writing an application that serves up web pages, you should contact Schneider Automation
before proceeding.

QUCM Manual 3 QUCM Language Definitions 19

3

QUCM Language Definitions

The QUCM language is its own unique structured language, although the user will probably notice
similarities with BASIC, PASCAL, and C. Labels are used to control program flow. Line numbers are
not required. The following definitions apply through this manual:

Constant Data Representation - <const>
If numeric data is to remain the same during the entire operation of the QUCM program then they
should be treated as constants. The QUCM supports unsigned decimal integers (16 bits), signed deci-
mal integers, hexadecimal integers, long integers (32 bit), floating point numbers (32 bit), boolean con-
stants, and a few reserved constants. The use of a constant is referred to as <const> in this manual.

Table 3-1 Constant Data Types

Decimal Integers

Decimal integers are defined as the unsigned whole numbers within the range from 0 through 65,535.
The following are examples of decimal integers:

0
32114
59
65311

Constant Data
Type

Range Prefix Symbol

Decimal 0...65,535 NA

Signed Integer -32768...32767 NA

Hexadecimal
Integer

0...FFFF x

Long Integers 0...4294967295 NA

Floating Point 8.43 x 10E-37... 3.402 x 10E38

Boolean Constants TRUE, FALSE NA

Reserved Constants EVEN,ODD,NONE NA

20 QUCM Language Definitions 3 QUCM Manual

Signed Integers

Signed integers are defined as the whole numbers within the range from -32768 through 32767. The
following are examples of signed integers.

-514
0
31
-1

Hexadecimal Integers

Hexadecimal integers are defined as the hexadecimal representation of the whole numbers within the
range from 0 through FFFF. Hexadecimal numbers are defined by the prefix x. The following are ex-
amples of hexadecimal constants:

x12AB
xf34c
x15

Boolean Constants

There are two predefined boolean constants: TRUE and FALSE. The following are valid uses of the
boolean constants:

SET CAPITALIZE FALSE
SET DEBUG TRUE

Floating Point Numbers

Floating point constants must end with a decimal point and at least one decimal place. The following
are valid floating point examples:

-1.0
3.14159
2.5E-11

Reserved Constants

The following constants are reserved for the use in the SET PARITY statement: EVEN, ODD, and
NONE. The following are valid uses of the reserved constants:

SET PARITY EVEN
SET PARITY ODD
SET PARITY NONE

Variable Data Representation
The QUCM uses alpha-numeric names for variables and each variable must be explicitly declared using
the DECLARE statement. The possible variable types supported by the QUCM are listed below:

• BYTE (8 bits signed)

• UNSIGNED BYTE (8 bits unsigned)

• WORD (16 bits signed)

• UNSIGNED WORD (16 bits unsigned)

• LONG (32 bits signed)

• TIMER (32 bits signed)

• FLOAT (32 bits signed)

• STRING (an array of 8 bit bytes)

QUCM Manual 3 QUCM Language Definitions 21

• SOCKET (Ethernet IP socket)

If a type is not included in the DECLARE then the type defaults to a SIGNED WORD.

It is also possible to define single dimensional arrays of variables using the form variable[size], and
two-dimensional arrays using the form variable[Asize, Bsize]. Valid array indicies for array[N] are
0..(N-1).
Multiple variables may be declared on a single statement with commas as separators.
The following statements are valid DECLARE examples:

DECLARE BYTE apple
DECLARE WORD x, y, zebra
DECLARE WORD r[100], group[10]
DECLARE SOCKET s[8], mysock
DECLARE STRING in[25]
DECLARE WORD a, b, c FLOAT x, y, z {the , after the c is optional. a, b, and c are

words and x, y, and z are floats.}
There are two predefined arrays of words that are fixed and reserved: INPUT[x] and OUTPUT[x]. The
INPUT[x] array ranges from index 0 through 31 inclusive and refers to the 32 possible PLC input (3x)
registers on the backplane. These words are PLC Read-Only and may be modified only by the QUCM
applications. The OUTPUT[x] array ranges from index 0 through 2015. Index values 0 through 31 are
reserved for the 32 possible PLC OUTPUTs (4x registers) and are Read-Only to the QUCM applica-
tions. OUTPUT[32] through OUTPUT[2015] are Read/Write by the QUCM Applications.
The OUTPUT and INPUT variables are global to both Applications and all Threads within the Applica-
tions. Variables declared before the first THREAD statement are global to a given Application. Vari-
ables declared within a THREAD are local to that Thread.

Arithmetic Expressions - <expr>
Numeric expressions, referred as <expr> in this manual, involve the operation of variables and con-
stants through a precedence of operators and functions.

Numeric Operators

Table 3-2 Numeric Operators

Precedence of Operators

The order of precedence of supported numeric operators are as follows:

Numeric
Operator

Description Example

+ Addition x + 5

- Subtraction OUTPUT[10] - 5

* Multiplication apple * 5

/ Division z / 5

% Modulus OUTPUT[25] % 5

& Bitwise AND OUTPUT[25] & x100

| Bitwise OR OUTPUT[25] | x100

^ Bitwise Exclusive OR INPUT[25] ^ x100

>> Bitwise Shift Right BYTE >> 4

<< Bitwise Shift Left I << 2

- Unary Negation -OUTPUT[25]

~ Unary Bitwise Complement ~OUTPUT[25]

() Parentheses (OUTPUT[25] + 5) * 3

22 QUCM Language Definitions 3 QUCM Manual

1 Sub expressions enclosed in parentheses

2 Unary Negation or Unary Complement

3 *, /, % From left to right within the expression.

4 +, - From left to right within the expression.

5 <<, >> From left to right within the expression.

6 &, ^, | From left to right within the expression.

Numeric Functions

The QUCM supports a group of seven checksum calculating functions to be used only within message
descriptions:

Table 3-3 Checksum Functions

The first <expr> is the starting index. The next <expr> is the ending index. The last <expr> is the
initial value usually 0 or -1.

These additional functions are also provided:

Table 3-4 Additional Functions

Labels - <label>
The QUCM supports alphanumeric labels for targets of GOTO and GOSUB functions. The label con-
sists of a series of characters ended with a colon. Labels must start with a alphabetic character, num-
bers are not allowed as the first character in a Label. Labels may not be the exact characters in a
QUCM language reserved word. The label TIMEOUTLoop: is valid while TIMEOUT: is not valid.

Logical Expressions - <logical>
The QUCM supports the following logical operators and relational operators. These are referred to as
<logical> elsewhere in this manual.

Function Description

CRC(<expr>,<expr>,<expr>) Cyclical Redundancy Check (CCITT Standard)

CRC16(<expr>,<expr>,<expr>) Cyclical Redundancy Check

CRCAB(<expr>,<expr>,<expr>) Special CRC16 for A-B applications

CRCBOB(<expr>,<expr>,<expr>) Special CRC16 for BinMaster SmartBob applications

CRCDNP(<expr>,<expr>,<expr>) Special CRC16 for DNP 3.00 applications

LRC(<expr>,<expr>,<expr>) Longitudinal Redundancy Check by byte

LRCW(<expr>,<expr>,<expr>) Longitudinal Redundancy Check by word

SUM(<expr>,<expr>,<expr>) Straight Sum by byte

SUMW(<expr>,<expr>,<expr>) Straight Sum by word

Function Description Example OUTPUT[45]=x1234, OUTPUT[46]=xABCD

MIN(<expr>,<expr>) Provides a result of the <expr> which evaluates
to the smaller of the two expressions.

OUTPUT[100] = MIN(OUTPUT[45],OUTPUT[46]) results
in OUTPUT[100] = x1234

MAX(<expr>,<expr>) Provides a result of the <expr> which evaluates
to the larger of the two expression.

OUTPUT[100] = MAX(R[45]*x0A,OUTPUT[47]) results in
OUTPUT[100] = x65E0

SWAP(<expr>) Reversed the byte order of the register. OUTPUT[100] = SWAP(OUTPUT[46]) results in
OUTPUT[100] = xCDAB

QUCM Manual 3 QUCM Language Definitions 23

Logical Operators

Table 3-5 Logical Operators

Relational Operators

Table 3-6 Relational Operators

Functions - <function>
Functions are general purpose sections of code that may be accessed from multiple threads and other
functions in an application. Functions are similar to a subroutine where the parameters are passed
to/from the function during the call.

Memory for variables declared within a function are allocated when the function is called, and the
memory is freed when the function exits. Variable names within a function can have the same name as
global or thread local variables. When a variable is referenced within a function, the compiler checks
first for function local variables, then for thread local variables, then for global variables by that name.

NOTE: At the present time, only "word" variables may be passed as parameters to functions. If the
function must process long, byte, string, float, or arrays then they must be declared as global.

FUNCTION <function name> <comma separated variable list>
(function body)

ENDFUNC <returned variable list>

Logical
Operator

Definition Example

AND Result TRUE if both TRUE IF <expr> AND <expr> THEN

OR Result TRUE if one or both TRUE IF <expr> OR <expr> THEN

NOT Inverts the expression IF NOT(<expr>) THEN

Relational
Operator

Definition Example

< LESS THAN IF <expr> < <expr> THEN

> GREATER THAN IF <expr> > <expr> THEN

<= LESS THAN or EQUAL IF <expr> <= <expr> THEN

>= GREATER THAN or EQUAL IF <expr> >= <expr> THEN

= EQUAL IF <expr> = <expr> THEN

<> NOT EQUAL IF <expr> <> <expr> THEN

FUNCTION AVERAGE (VALUE1, VALUE2)
 DECLARE WORD RETURNVALUE
 RETURNVALUE = (VALUE1 + VALUE2) / 2
ENDFUNC(RETURNVALUE)

--or--

FUNCTION SQUARE (VALUE)
ENDFUNC (VALUE * VALUE)

24 QUCM Language Definitions 3 QUCM Manual

Message Descriptions - <message description>
The <message description> refers to the actual serial data that is transmitted from the QUCM port or
expected data that is to be received by the port. The <message description> may include literal strings,
results of various message functions and the concatenation of the above.

Literal String - <string>

A literal string is a string enclosed in quotes. "This is a literal string."

Literal strings may include hexadecimal characters by form \xx where xx is the two digit hex number of
the character. This is useful for sending non-printable characters. "This is another literal
string.\0D\0A" will print the message with a carriage return (0D) and a line feed (0A).

Embedded quotation marks may be included in literal strings by the insertion of \" in the location of the
embedded quote. "This will print a \"quote\" here."

Embedded \ characters may similarly be inserted by using \\.

String Variables

String variables may be embedded directly into a message description:

DECLARE STRING ALPHA[20]
ALPHA = "ABC123"
TRANSMIT PORT 1 "=BEFORE=":ALPHA:"=AFTER="

would send the string =BEFORE=ABC123=AFTER= out serial port 1. Similarly, string variables may
be embedded directly into ON RECEIVE statements:

ON RECEIVE PORT 1 ALPHA:"\0D" GOTO NEXT

would place all characters received before the Carriage Return (0x0D) into the string variable AL-
PHA. Care must be taken to ensure that the data read into the string is not longer than the string decla-
ration. For instance, if the above ON RECEIVE were to attempt to put 21 characters into ALPHA,
which was declared with a length of 20 bytes, the program would halt, with runtime stop code 7 (Value
out of bounds).

Message Functions

The QUCM can perform a variety of functions on transmitted and received data. When the QUCM is
using these functions for transmitting, register data and expressions are turned into strings according to
the function’s rules. When the QUCM is using these functions for receiving, incoming strings are
either matched to the strings that the QUCM expected to receive or they are translated into data and
stored in registers.

The following is a list of message functions, each function is described in more detail on pages 46
through 48.

QUCM Manual 3 QUCM Language Definitions 25

Table 3-7 Message Functions

The message functions that take the form FUNC(<expr>,<expr>) use the following rules: When using
these functions with TRANSMIT, the first <expr> is the data to be translated and transmitted. When
using these functions with ON RECEIVE, replace the first <expr> with <variable> to have the incom-
ing string translated and placed into the register OUTPUT[] or use (<expr>) to have the expression
evaluated and matched to the incoming string. The second <expr> in the these functions is the number
of characters either to transmit or to receive. An error will be generated at compile or run time if this
expression evaluates to less than zero.

RAW takes the form RAW(<variable>,<expr>). In this case the first <expr> is the starting register
number and the second <expr> is the number of characters. Always uses the high byte first and then
the low byte.

The message functions that take the form FUNC(<expr>) have fixed character lengths. BYTE trans-
mits one character, the least significant byte, while WORD and RWORD each transmit two characters.
WORD transmits the most significant byte and then the least significant byte while RWORD reverses
the order, least significant then most significant. As in the previous message functions, when transmit-
ting use <expr> and when receiving either use <variable> to receive and place in a register or (<expr>)
to evaluate and match. For examples of the message functions see Chapter 6 - Examples.

In all of the message functions, only characters from the valid character set for that command can be
used.

Variable Fields
The width field of any transmit or receive element (that has a width) may be replaced with either of two
constructions. (Transmit RAW is an exception as shown below.) The first is just the word VARIABLE,
i.e. TRANSMIT DEC(OUTPUT[10],VARIABLE). The second is VARIABLE followed by a register
reference, i.e. TRANSMIT HEX(OUTPUT[11],VARIABLE OUTPUT[10]) which will write the actual
width to the specified register

Transmit usage of Variable length

A variable field in a TRANSMIT statement means one encoded with only the necessary number of dig-
its (no leading zeros).

For example, if OUTPUT[11] = 1234 then
TRANSMIT PORT 1 "$":DEC(OUTPUT[11], variable OUTPUT[10]):"#"

would send out the string $1234# and OUTPUT[10] would have the value 4. If OUTPUT[11] = 89
then the string $89# would be transmitted and OUTPUT[10] would equal 2.

This type of transmit structure applies to the BCD, UNS, DEC, HEX, OCT, and IDEC formats. The
TRANSMIT RAW variable structure requires a terminator byte of 00 hex at the end of the raw string.

Functions Description

BCD(<expr>) Binary Coded Decimal conversion

BYTE(<expr>) Least Significant (low) byte conversion

DEC(<expr>,<expr>) Decimal conversion (base 10) -32768 to 32767

HEX(<expr>,<expr>) Hexadecimal conversion (base 16)

IDEC(<expr>,<expr>) IDEC format hexadecimal conversion

OCT(<expr>,<expr>) Octal conversion (base 8)

RAW(<variable>,<expr>) Sends/Receives high byte then low byte of a register(s)

RWORD(<expr>) Sends/Receives low byte of an expression

UNS(<expr>,<expr>) Unsigned decimal conversion (base 10) 0 to 65,535

WORD(<expr>) Sends/Receives high byte then low byte of an expression

26 QUCM Language Definitions 3 QUCM Manual

The transmit raw variable sends up to but not including the null terminator. The optional count register
does not include the terminator in the count.

For example, if OUTPUT[11]=x486F, OUTPUT[12]=x7764, and OUTPUT[13]=x7900 then
TRANSMIT PORT 1 "$":RAW(OUTPUT[11], VARIABLE OUTPUT[10]):"#"

would send the string $Howdy# and OUTPUT[10] would equal 5. If OUTPUT[12]=x0000 then the
string $Ho# would be transmitted and OUTPUT[10] would equal 2.

ON RECEIVE usage of Variable length

A variable field in an ON RECEIVE statement must be followed by a literal field such as "\0d". The
first character of the literal field works as a terminator.

For example, A device sends a variable length number with a fixed number of decimal points such as
$125.01 or $3.99; the decimal point may be used as a terminator and it could be handled as follows:

ON RECEIVE port 1 "$":dec(OUTPUT[100],variable):".":dec(OUTPUT[101],2)
In the case of $125.01, register OUTPUT[100] = 125 and OUTPUT[101] = 1. For $3.99, register OUT-
PUT[100] = 3 and OUTPUT[101] = 99.

The ON Receive raw variable writes an extra zero byte to the registers following the received data. In
the case of an odd number of characters, the last register contains the final character in the MSB and a
zero in the LSB. In the case of an even number of characters, all 16 bits of the register following the
last two characters are set to zero. This null terminator is not included in the count optionally reported.

For example: A device transmits a variable length error message terminated with a carriage return and
line feed.

ON RECEIVE port 1 RAW(OUTPUT[500], variable OUTPUT[200]):"\0d\0a"

will accept the message and place it in packed ASCII form starting at register 500. Register 200 would
hold the number of characters (bytes) accepted in the string not including the carriage return or line
feed.

Message Assignments
It is sometimes convenient to apply the message descriptions of a TRANSMIT message and store the
message in a variable in the QUCM rather than transmit the string. This is possible by simply using the
assignment character = to a string variable.

STRINGVARIABLE = <message>

The message will be placed in the string variable and the LENGTH of the string will be set to the num-
ber of character is <message>. Any valid transmit message may be stored in this manner.

For example:
STRINGVAR = "Hello!\0d\0a"

would result in the string STRINGVAR containing the string "Hello!\0d\0a" (where \0d and \0a are
Carriage Return, and Line Feed, respectively).

Something more obviously useful might be:

STRINGVAR = byte(Device):"\03":word(Address):word(Count):rword(crc16(1,$-1,0))

which would place the reversed word of the checksum in register at the end of the string.

QUCM Manual 4 QUCM Language Statements 27

4

QUCM Language Statements

The QUCM language statements are described in this chapter. Statements control the operation of the
QUCM by determining the flow of the program.

The format of these statements includes the definitions from Chapter 3 - QUCM Language Definitions.
Whenever one of these definitions is referenced in a statement it is enclosed in brackets <>. For exam-
ple, whenever a statement requires an expression it will appear as <expr>. The words statement and
command are used interchangeably.

The word newline means a carriage return, line feed or both, whatever your text editor requires. Most
commands do not require newlines but those that do use the word newline. Since most commands do
not requires newlines, multiple statements can be placed on a single line. A whole program could be
written on a single line if no statements that require a newline are used. For readability, newlines be-
tween statements can be used without penalty.

Also note that, except in strings, capitalization in the QUCM program is ignored by the QUCM and its
compiler. The label Tom: is the same as the label TOM:. In literal strings, which are enclosed in
quotes "", the capitalization is maintained by the QUCM. The command SET CAPITALIZE can effect
the way the QUCM handles ASCII characters on transmitting and receiving.

Program flow within a THREAD is sequential, from the first statement to the second statement to the
third statement etcetera, unless a program flow control statement is reached. Program flow statements
can be jumps (GOTO or GOSUB), loops or conditionals (IF...THEN ...ELSE...ENDIF). After a jump,
program flow is still sequential starting with the statement immediately after the label. Loops can be
accomplished with FOR...NEXT, REPEAT ...UNTIL, or WHILE...WEND.

Assignments
The QUCM language allows for the assignment of values to variables and bits of variables. These as-
signments are similar to the BASIC LET statement.

variable[<expr>]=<expr>
This statement sets the variable specified by the first <expr> to the value obtained by the second
<expr>. The valid range of variable numbers in the first <expr> is dependent upon the DE-
CLARED range of the variable.

variable[<expr>].<const>=<logical>
This statement sets a single bit of a variable to be one (TRUE) or zero (FALSE). The <expr> can

28 QUCM Language Statements 4 QUCM Manual

have the values defined by the DECLARE of the variable. The valid values for <const> depend on
the type of <Expr> (see Table 5-1, below). <Logical> can have the values TRUE or FALSE.

Table 4-1 Referencing Bits in Different Variable Types

<variable>.(<expr>)=<logical>
This statement sets the bit of a register to be the evaluation of the <logical> segment.

<variable>.<variable>=<logical>
This statement sets the bit of a register to be the evaluation of the <logical> segment

<variable>=<message description>
This statement sets the string variable specified by the <expr> to the ASCII values obtained by
evaluation of the <message description>. The <message description> may be any valid message
used in a TRANSMIT command.

BAUD
See SET BAUD on page 36.

CAPITALIZE
See SET CAPITALIZE on page 36.

CLEAR
CLEAR variable[<expr>].<const> or CLEAR variable[<expr>].(<expr>)

The CLEAR statement sets a single bit of a variable to ZERO. The bit number <const> or <expr>
must evaluate within the range of 1-16 for OUTPUT registers, 0-7 for bytes, 0-15 for words, and
0-31 for long variables. To clear a single bit of a register to be set to one use the SET statement.

CLOSE
CLOSE SOCKET <socket variable> [TIMEOUT <expr>]

Closes the open IP connection associated with <socket variable>. The optional TIMEOUT speci-
fies how long the QUCM TCP/IP stack will wait for the other device to acknowledge the request to
close the connection before aborting (resetting) the connection. If no TIMEOUT is specified, the
QUCM will wait indefinitely for the other device to acknowledge the close request. A TIMEOUT
value of zero will cause the connection to be immediately closed, without the other devices’ ac-
knowledgment.

CONNECT
CONNECT <protocol> SOCKET <socket variable> <IP Address> PORT <port number>

Connect opens an IP connection using the <protocol> to the remote <IP Address> on the <port

Variable Type Range of Bits Bit Significance

OUTPUT[N] and
INPUT[N]

1...16 Modicon Bit Numbering: Most Significant Bit
(MSB) = Bit 1 ... LSB = Bit 16

BYTE 0...7 IEC Compliant Bit numbering:
MSB = Bit 7 ... LSB = Bit 0

WORD 0...15 IEC Compliant Bit numbering:
MSB = Bit 15 ... LSB = Bit 0

LONG, TIMER 0...31 IEC Compliant Bit numbering:
MSB = Bit 31 ... LSB = Bit 0

QUCM Manual 4 QUCM Language Statements 29

number>.

NOTE: Only <protocol>= TCP is presently supported.

The <IP Address> must be a comma separated decimal notation:

DECLARE SOCKET S, BYTE HOST[4]
HOST = 206,223,51,161
CONNECT TCP SOCKET S HOST PORT 80

would establish a connection to port 80 of the device with IP address 206.223.51.161.

DATA
See SET DATA on page 36.

DEBUG
See SET DEBUG on page 36.

DECLARE
DECLARE [SIGNED|UNSIGNED] [<variable type>} <variable name>[[array size]]

The DECLARE statement is a compiler instruction which creates a variable named <variable
name> of type <variable type>. Variables may be declared anywhere in the program, as long as
they are declared before they are referenced. Variables declared before the first THREAD state-
ment will bel global in scope, thus will be accessible to all the threads. Variables declared after a
THREAD statement will be accessible only within the thread in which it was declared. Variables
declared within a FUNCTION will be accessible only within that function.

If the SIGNED/UNSIGNED specification is omitted, the variable created will be SIGNED. If the
<variable type> is omitted, a WORD variable will be created. Thus the statement:

DECLARE FOO

will create a variable named FOO, which is a signed word variable. Multiple variable types may be
declared in one DECLARE statement:

DECLARE BAR, STRING A[40], B[30], FLOAT X, Y[10]

would create five variables: BAR is a signed word, A is a string with maximum length of 40 bytes,
B is a string with a maximum length of 30 bytes, X is a floating point variable, and Y is an array of
ten floating point variables (Y[0] ... Y[9]).

When a variable is referenced (i.e. Y[0] = 0.0), the compiler first checks whether the variable is a
function local variable (if the statement is inside a function), then checks whether the variable is a
thread local variable (if the statement is multi-threaded, and the statement appears after a THREAD
statement), then checks whether the variable was defined as a global variable. Thus, the same vari-
able name may be used in different threads, and each thread will access a different variable.

The available <variable types> are:

30 QUCM Language Statements 4 QUCM Manual

Table 4-2 Declared Variable Types

DEFINE
DEFINE <macro>=<replacement string> newline

The DEFINE statement is a compiler instruction for a global find and replace. When the QUCM
program is compiled the compiler finds every string <macro> and replaces it with the the string
<replacement string>. Both <macro> and <replacement string> are type <string>. A newline is
required to define the end of the replacement string. Use of this statement can help the readability
of the user program and also make the program easier to write.

DELAY
DELAY <expr>

The DELAY statement forces the QUCM to pause in its execution of other instructions until a pe-
riod of time equal to <expr> times 1mS has expired. Valid range is 0 to xFFFFFFFF.

DUPLEX
See SET DUPLEX on page 36.

ERASE
ERASE <variable>

The ERASE command initializes a variable or array to zero.

Variable Type Description Bytes
Used

Range

UNSIGNED BYTE Unsigned Byte (8-bit) variable. 1 0...255

SIGNED BYTE Signed Byte (8-bit) variable. 1 -128...127

UNSIGNED WORD Unsigned Word (16-bit) variable. 2 0...65535

SIGNED WORD Signed Word (16-bit) variable 2 -32768...32767

UNSIGNED LONG,
TIMER

Unsigned Long Word (32-bit) variable. 4 0...4294967296

SIGNED LONG Signed Long Word (32-bit) variable. 4 -2147483648...2147483647

FLOAT IEEE format 32-bit Floating Point
variable. Float variables are always
signed.

4

STRING String variable. Must be declared as an
array:
DECLARE STRING A[40]

2 +
String
Length

Strings in the QUCM are NOT zero-
terminated, thus each byte may
contain ANY value, including zero.

SOCKET Socket structures are used for TCP
Ethernet connections. Values in the
structure are not directly accessible,
except through statements
(CONNECT, LISTEN, TRANSMIT,
ON RECEIVE) and functions
(SOCKETSTATE ()).

1538

QUCM Manual 4 QUCM Language Statements 31

ERASE FLASH
ERASE FLASH <const>

The ERASE FLASH command initializes a block of flash memory to zero.

Possible values and descriptions are found in Table 4-3.

Table 4-3 Const values

EXPIRED
ON EXPIRED(<variable>) GOTO <variable>

IF EXPIRED(<variable>) THEN <expression>

The EXPIRED command is used in conjunction with a declared timer to allow the user to perform
other functions based on a timeout. A timer is declared, and a value in milliseconds is assigned in
one or two commands. The user can then use the EXPIRED command to check if the timer has run
out.

FOR...NEXT
The FOR ... NEXT statement provides the ability to execute a set of instructions a specific number of
times. The variable <variable> is incremented from the value of the first <expr> to the value of the
second <expr>. Once the variable is greater than the second <expr>, control passes to the next program
statement following the NEXT. If the optional STEP expression is included, the variable <variable> is
incremented by the value equal to the STEP <expr>. If the STEP <expr> is not present a step of 1 is
assumed.

FOR <variable>=<expr> TO <expr>
one or more statements
NEXT

FOR <variable>=<expr> TO <expr> STEP <expr>
one or more statements
NEXT

FOR ... NEXT loops may be constructed to decrement from the first <expr> to the second <expr> using
the DOWNTO function. The STEP <expr> must be a negative number. If STEP <expr> is not present
a step of -1 is assumed.

FOR <variable>=<expr> DOWNTO <expr>
one or more statements
NEXT

FOR <variable>=<expr> DOWNTO <expr> STEP <expr>

Const
Value

Description

1 Parm flash block 1

2 Parm flash block 2

101 First half of App 1 code space

102 Second half of App 1 code space

103 First quarter of App 2 code space

104 Second quarter of App 2 code space

105 Third quarter of App 2 code space

106 Fourth quarter of App 2 code space

32 QUCM Language Statements 4 QUCM Manual

one or more statements
NEXT

FOR...NEXT loops may be nested any number of levels.

FLUSH
FLUSH PORT x

The FLUSH statement empties the receive buffer for the specified port.

GOSUB...RETURN
GOSUB <label>

The GOSUB statement turns control of a program to another area of code while expecting to get
control back from a RETURN statement. It is useful for program flow control where one section
of code may be used several times. Somewhere in the program flow following <label> needs to be
a RETURN statement. The RETURN statement returns program control back to the GOSUB state-
ment that caused the jump. After a RETURN the QUCM will continue running using the statement
immediately following the GOSUB.

GOTO
GOTO <label>

The GOTO statement turns program control over to another area of code.

IF...THEN...ELSE...ENDIF
The IF ... THEN statement is used to control the program flow based upon the logical evaluation of the
expression in <logical>. When <logical> is true, the statements following the THEN are executed. If
<logical> is false the statements following the ELSE are executed.

IF <logical> THEN one or more statements followed by newline

IF <logical> THEN one or more statements ELSE one or more statements followed by a newline

When more statements are required for an IF ... THEN, the statements may be placed on additional
lines below the IF ... THEN. The ENDIF statement indicates the termination of the IF statement.

IF <logical> THEN newline
one or more statements
ENDIF

IF <logical> THEN newline
one or more statements
ELSE
one or more statements
ENDIF

LIGHT
See SET LIGHT on page 36.

LISTEN
LISTEN <protocol> SOCKET <socket number> PORT <protocol port number>

The listen command instructs the Ethernet port to use a socket to listen for a particular protocol on a
given port number. Presently only the TCP protocol is supported.

Example: LISTEN TCP SOCKET mysock PORT 502

Common TCP port numbers are shown in Table 4-4.

QUCM Manual 4 QUCM Language Statements 33

Table 4-4 Well Known TCP Port Numbers

1 Internet Protocols are available as Requests For Comment (RFCs). They are available on the
Internet via HTTP: http://www.rfc-editor.org
2 The Modbus/TCP specification is available http://www.modicon.com/openmbus/

MOVE
Reserved instruction for a special NR&D motion control application. Must not be used in user applica-
tion.

MULTIDROP
See SET MULTIDROP on page 37.

ON CHANGE
ON CHANGE <variable> GOTO <label>

ON CHANGE <variable> RETURN

ON CHANGE <variable> & <expr> GOTO <label>

ON CHANGE <variable> & <expr> RETURN

The ON CHANGE statement functions within a WAIT loop (like an ON RECEIVE or ON
TIMEOUT), and performs the GOTO or RETURN depending upon the result of the value of <vari-
able>. When the value in <variable> is modified by another source, the ON CHANGE statement is
performed.

ON <expression>
ON <expression> GOTO

ON <expression> RETURN

When the expression evaluates TRUE the wait loop is exited and flow proceeds to the GOTO or
RETURN.

ON RECEIVE PORT x

ON RECEIVE SOCKET x
ON RECEIVE port 1 <message description> GOTO <label>

ON RECEIVE socket <socket name> <message description> GOTO <label>

ON RECEIVE port 2 <message description> RETURN

ON RECEIVE SOCKET <socket name> <message description> RETURN

The ON RECEIVE statement functions within a WAIT loop and performs the GOTO or RETURN
depending upon whether the incoming string exactly matches the <message description>.

Well Known
Port Number

TCP Protocol Associated RFC 1

21 FTP 959

23 TELNET 854

25 SMTP 821

80 WEB Server (HTTP) 2616

110 POP3 1939

502 Modbus/TCP N/A2

34 QUCM Language Statements 4 QUCM Manual

ON TIMEOUT
ON TIMEOUT <expr> GOTO <label>

ON TIMEOUT <expr> RETURN

The ON TIMEOUT statement functions within a WAIT loop (like an ON RECEIVE or ON
CHANGE), and performs the GOTO or RETURN depending upon the elapsed time between in-
coming characters on the port. The result of the <expr> must fall within the range 0 to FFFF hex.
Like the DELAY function, the ON TIMEOUT <expr> waits for a period of time equal to <expr>
times 1mS.

PARITY
 See SET PARITY on page 38.

READ FILE
READ FILE <file number> OFFSET <offset value> <variable,variable,...>

The READ FILE statement allows a QUCM program to read memory from the 6x file areas of the
QUCM to the user memory area.

The <file number> is an expression which evaluates a number in Table 4-5.

Table 4-5 QUCM Internal File List

The <offset> is an expression which evaluates to the byte location for the start of the read.

*NOTE: QUCM-SE RAM block 1 at file 768 is only 16K bytes and block 2 does not exist. At-
tempting to access these RAM areas will result in a runtime error.

File
Number

(dec)

File
Number

(hex)

Memory
Description

Memory Size

256 100 Application 1 Program 128K bytes

384 180 Application 1 Variables 32K bytes

512 200 Application 2 Program 128K bytes

640 280 Application 2 Variables 32K bytes

768 300 General Use Ram Block 1* 128K bytes

1024 400 General Use Ram Block 2* 128K bytes

1792 700 Application 2 Program Extension 128K bytes

2560 A00 Flash Block 1 8K bytes

2816 B00 Flash Block 2 8K bytes

QUCM Manual 4 QUCM Language Statements 35

READ FLASH
READ FLASH <const> <variable,variable,...>

The READ FLASH statement allows a QUCM program to read memory from the flash memory of
the QUCM to the user memory area.

Possible values for const are shown in Table 4-5.

Table 4-6 QUCM Internal File List

REPEAT...UNTIL
REPEAT

program statements

UNTIL <logical>

The REPEAT statement starts a loop based upon the evaluation of the <logical> condition located
in the UNTIL statement. The loop will only be performed as long as the <logical> is FALSE.
When the <logical> is TRUE, program execution jumps to the statement following the UNTIL.

Note: The program statements will execute at least once regardless of the condition of <logical>.
This is different than the WHILE...WEND or FOR...NEXT loops which only execute while the
<logical> is TRUE, and will not execute the program statements within their boundaries if the
<logical> is FALSE.

RETURN
See GOSUB...RETURN on page 32.

SET
The SET statement allows the initialization of the QUCM for the following parameters: Baud rate,
Capitalization of incoming characters, Data bits, Parity, Stop bits, Debug mode., user light patterns,
timers, and several PPP settings. SET PORT must be followed by the serial port number for the action
to take place.

const
(dec)

File
Number

(dec)

Memory
Description

Memory
Size

1 2560 Parm flash block 1 8k bytes

2 2816 Parm flash block 2 8k bytes

101 256 First half of App 1 code space 64k bytes

102 320 Second half of App 1 code space 64k bytes

103 512 First quarter of App 2 code space 64k bytes

104 576 Second quarter of App 2 code space 64k bytes

105 1792 Third quarter of App 2 code space 64k bytes

106 1856 Fourth quarter of App 2 code space 64k bytes

36 QUCM Language Statements 4 QUCM Manual

SET DEBUG <const>
The SET DEBUG statement determines the operation of the QUCM port in the event of a run time
error. If SET DEBUG TRUE is used, the QUCM program will halt upon a run time error and dis-
play the error number and line number in the appropriate registers. If SET DEBUG FALSE is
used, the QUCM program will halt upon a run time error and immediately restart the program from
the beginning.

SET LIGHT <exp> <const>
The SET LIGHT statement is used to determine the state of the 10 indicator lights for the QUCM.
SET LIGHT 1 ON turns on the light while SET LIGHT 1 OFF turns off the light. See also TOG-
GLE LIGHT on page 39.

SET PORT x BAUD <const>
The SET BAUD statement sets the baud rate of the port for the value. Any decimal value may be
chosen for the baud rate. Example: SET PORT 1 BAUD 9600

SET PORT x CAPITALIZE <const>
SET SOCKET x CAPITALIZE <const>

The SET CAPITALIZE statement performs a translation on incoming ASCII alphabet characters
from the lower case to the upper case. Example: SET PORT 2 CAPITALIZE TRUE or SET
PORT 1 CAPITALIZE FALSE.

SET PORT x CTS <const>
The SET CTS statement sets the operation of the CTS pin on the RS-232 port. Possible values are
CTS ON - The is the normal mode of CTS where CTS must be asserted to allow the serial port to
transmit.
CTS OFF - Allows the use of the CTS pin to be independently monitored for its state while the
serial port is allowed to transmit regardless of the state of CTS. This operation is very useful in
modem applications where CTS is wired to DCD on the modem so the QUCM can tell if the mo-
dem has carrier.

SET PORT x DATA <const>
The SET DATA statement sets the number of data bits for the operation of the port. Valid range is
5,6,7, or 8 bits. Example: SET PORT 1 DATA 8

SET PORT x DUPLEX <const>
The SET DUPLEX statement determines the operation of the port’s receiver. With DUPLEX
HALF, the receiver is only turned on when the port is not transmitting. With DUPLEX FULL, the
receiver is always on. DUPLEX HALF should is used in 2-wire applications.

SET MODE <const>
The SET MODE statement determines the operating mode of the port. Valid entries are UCM,
RTU, SYMAX, RNIM, and PPP.

UCM mode allows the use of raw TRANSMIT and RECEIVE statements to communicate with the
external device. Example: TRANSMIT PORT 1 "Example string"

RTU mode gives the QUCM more automatic control of the TRANSMIT and RECEIVE state-
ments. This mode lets the QUCM assume that the communication will be Modbus RTU. The pro-
grammer will create a Modbus packet in a byte array, then hand the QUCM a length and the name
of the array. During TRANSMIT, the QUCM will calculate and append the checksum to the end
of the packet. During RECEIVE, the QUCM will watch for the 3.5 character timeout, then verify
the checksum. The QUCM will then replace the data in the array with the new data from the reply.

DECLARE UNSIGNED BYTE CMD[100]

QUCM Manual 4 QUCM Language Statements 37

DECLARE WORD CMDLEN
...
TRANSMIT PORT 1 WORD(CMDLEN):RAW(CMD,CMLEN)
ON RECEIVE PORT 1 WORD(CMDLEN):RAW(CMD,CMLEN) GOTO <variable>

SYMAX mode works on the same principle as RTU mode. The QUCM will assume that the fol-
lowing communication is SY/MAX, and will handle checksums, ACK’s, DLE escapes, etc. , in-
volved in SY/MAX communications. During TRANSMIT, the programmer will hand the QUCM
the length of the SY/MAX packet data, the SY/MAX route escaped by xFF, and the SY/MAX
packet data. During RECEIVE, the QUCM will hand the programmer, the length of the reply, the
route escaped by xFF, and the SY/MAX reply data.

DECLARE STRING ROUTE[16], REPLYDATA[200]
DECLARE WORD REMOTE, COUNT, REPLYLEN
...
TRANSMIT PORT 1 WORD(6):RAW(ROUTE,LENGTH(ROUTE)):"\FF":"\00\03":
WORD(REMOTE):WORD(COUNT)
ON RECEIVE PORT 1 WORD(REPLYLEN):"\11":RAW(ROUTE,4):"\FF":"\86\03":
WORD((REMOTE)):RAW(REPLYDATA,REPLYLEN-4) GOTO <variable>

RNIM mode is nearly identical to SYMAX mode. The only differences are the addition of a Net-
work ID, transaction number, and a drop before the route.

DECLARE STRING ROUTE[16], REPLYDATA[200]
DECLARE WORD DROP, TRANSNUM, REMOTE, COUNT, REPLYLEN
...
TRANSMIT PORT 1 WORD(6):BYTE(DROP):BYTE(TRANSNUM):"\00":
RAW(ROUTE,LENGTH(ROUTE)):"\FF":"\00\03":WORD(REMOTE):WORD(COUNT)
ON RECEIVE PORT 1 WORD(REPLYLEN):"\11":BYTE(TRANSNUM):RAW(ROUTE,4):
"\FF":"\86\03":WORD((REMOTE)):RAW(REPLYDATA,REPLYLEN-4) GOTO <variable>

PPP Mode allows the QUCM to use the serial port for TCP/IP communication using the PPP proto-
col.

SET SOCKET <socket> NAGLE <const>
The Set Socket Nagle statement controls how data is sent out a TCP/IP connection. In a socket
with NAGLE OFF, every TRANSMIT SOCKET command will create its own Ethernet packet. In
a socket with NAGLE ON (The default state), data sent out the socket is buffered as necessary by
the QUCM, which results in larger packets and better throughput, especially for applications such
as a Telnet server or a WWW server.

SET PORT x MULTIDROP <const>
The SET MULTIDROP statement controls the operation of the port’s transmitter. With
MULTIDROP TRUE, the transmitter is only on while transmitting. With MULTIDROP FALSE,
the transmitter is always on.

SET PORT x RTS <const>
The SET RTS statement sets the operation of the RTS pin on the RS-232 port. Possible values are
RTS ON - Forces RTS on continuously
RTS OFF - Forces RTS off continuously
RTS AUTO - Allows RTS to behave in normal Push-to-Talk operation

SET PORT x DATA <const>
The SET DATA statement sets the number of data bits for the operation of the port. Valid range is
5,6,7, or 8 bits. Example: SET PORT 1 DATA 8

38 QUCM Language Statements 4 QUCM Manual

SET PORT x PARITY <const>
The SET PARITY statement determines the parity of the port. Valid entries are EVEN, ODD, or
NONE. Example: SET PORT 1 PARITY EVEN

SET PORT x PPPUSERNAME <string const|string variable>
The SET PPPUSERNAME statement determines username for the PPP connection between the
QUCM and the PPP client or server.

SET PORT x PPPPASSWORD <string const|string variable>
The SET PORT x PPPPASSWORD statement determines password for the PPP connection
between the QUCM and the PPP client or server.

SET PORT x PPPHANGUP
The SET PORT x PPPHANGUP statement causes a graceful disconnect between the PPP
connection of the QUCM and the client/server.

SET PORT x STOP <const>
The SET STOP statement determines the number of stop bits for the port. Valid entries are 1 or 2.
Example: SET PORT 2 STOP 2

SET TIMER <variable><const>
The SET TIMER statement initializes a declared timer. The timer begins counting down to zero in
milliseconds from the number declared by <const>.

SET (bit)
SET <variable>.<const> or SET <variable>.(<expr>)

The SET statement sets a single bit of a variable to ONE. The bit number <const> or <expr> must
evaluate within the range off 1-16 for OUTPUT registers, 0-7 for bytes, 0-15 for words, and 0-31
for long variables. To clear a single bit of a register to be set to one use the CLEAR statement.

SOCKETSTATE
ON SOCKETSTATE (<socket>).<const> GOTO <label>

ON SOCKETSTATE (<socket>).<const> RETURN

IF SOCKETSTATE (<socket>).<const> THEN <expression>

The SOCKETSTATE statement allows the Application to make decisions based on the status of a
socket that was initiated by a CONNECT statement. Status bits are set for the SOCKETSTATE of
each declared socket. Bit 15 indicates when a socket is open. Bit 14 indicates that the socket is
listening. These are the most useful bits.

STOP
The STOP statement causes the QUCM program to halt upon its execution. The program may be re-
started by clearing and then setting the command bit for the program.

STOP (BITS)
See SET STOP on page 38.

SWITCH...CASE...ENDSWITCH
SWITCH CASE<expr><statement(s)> [CASE <expr> <statement(s) ...] ENDSWITCH

The SWITCH...CASE...ENDSWITCH construct allows many mutually exclusive conditional state-

QUCM Manual 4 QUCM Language Statements 39

ments or routines to be written without nesting a lot of IF...ELSE...ENDIF statements. Only one of
the CASEs contained within the SWITCH...ENDSWITCH construct will be executed. For Exam-
ple:

SWITCH
 CASE X=2
 Y = 2 * Y {Will execute only if X = 2}
 CASE X < 5
 Y = X * 5 {Will execute only if X < 5, but not if X = 2}
 CASE Y > 10 {Logical expressions can operate on different variables}
 Y = 0
 CASE TRUE {Comparable to default: in C}
 Y = 99
 X = 0 {These will execute only if all other CASEs fail to match}
ENDSWITCH

Program execution will continue with the instruction immediately after the ENDSWITCH state-
ment, whether any CASE matches or not.

TOGGLE
TOGGLE <variable>.<const> or TOGGLE <variable>.(<expr>)

The TOGGLE statement changes the state of a single bit of a variable. The bit number <const> or
<expr> must evaluate within the range off 1-16 for OUTPUT registers, 0-7 for bytes, 0-15 for
words, and 0-31 for long variables.

TOGGLE LIGHT
TOGGLE LIGHT <expr>

The TOGGLE LIGHT statement is used to change the state of the 10 indicator lights for the
QUCM. See also the SET LIGHT command on page 36.

TRANSMIT
TRANSMIT PORT x <message description>

TRANSMIT SOCKET s <message description>

The TRANSMIT statement allows serial (or Ethernet) communication to be emitted from the port.
(socket) The exact string evaluated from the <message description> will be emitted.

WAIT
The WAIT statement follows a group of ON RECEIVE, ON CHANGE, ON <expression>, and ON
TIMEOUT statements. The WAIT statement causes a loop to occur until one of the ON RECEIVE,
ON CHANGE, or ON TIMEOUT conditions has occurred. Program flow will be directed by the ON
RECEIVE, CHANGE, <expression>, or TIMEOUT statement.

WHILE...WEND
WHILE <logical>

program statements

WEND

The WHILE statement starts a loop based upon the evaluation of the <logical> condition. The loop
will only be performed as long as the <logical> is TRUE. When the <logical> is FALSE, program
execution jumps to the statement following the WEND.

40 QUCM Language Statements 4 QUCM Manual

WRITE FILE
WRITE FILE <file number> OFFSET <offset value> <variable,variable,...>

The WRITE FILE statement allows a QUCM program to write memory from the user memory area
to memory in the 6x file areas of the QUCM

The <file number> is an expression which evaluates a number in Table 4-7.

Table 4-7 QUCM Internal File List

The <offset> is an expression which evaluates to the byte location for the start of the read.

*NOTE: QUCM-SE RAM block 1 at file 768 is only 16K bytes and block 2 does not exist. At-
tempting to access these RAM areas will result in a runtime error.

WRITE FLASH
WRITE FLASH <const> <variable,variable,...>

The WRITE FLASH statement allows a QUCM program to WRITE memory to the flash memory
of the QUCM from the user memory area.

Possible values for const are shown in Table 4-7.

File
Number

(dec)

File
Number

(hex)

Memory
Description

Memory
Size

256 100 Application 1 Program 128K bytes

384 180 Application 1 Variables 32K bytes

512 200 Application 2 Program 128K bytes

640 280 Application 2 Variables 32K bytes

768 300 General Use Ram Block 1 128K bytes

1024 400 General Use Ram Block 2 128K bytes

1792 700 Application 2 Program Extension 128K bytes

2560 A00 Flash Block 1 8K bytes

2816 B00 Flash Block 2 8K bytes

QUCM Manual 4 QUCM Language Statements 41

Table 4-8 QUCM Internal File List

const
(dec)

File
Number

(dec)

Memory
Description

Memory
Size

1 2560 Parm flash block 1 8k bytes

2 2816 Parm flash block 2 8k bytes

101 256 First half of App 1 code space 64k bytes

102 320 Second half of App 1 code space 64k bytes

103 512 First quarter of App 2 code space 64k bytes

104 576 Second quarter of App 2 code space 64k bytes

105 1792 Third quarter of App 2 code space 64k bytes

106 1856 Fourth quarter of App 2 code space 64k bytes

QUCM Manual 5 QUCM Language Functions 43

5

QUCM Language Functions

The QUCM language includes a variety of commonly used functions to facilitate message genera-
tion and reception, and other program flow areas.

Checksum Functions

CRC
Form: CRC(<expr>,<expr>,<expr>)

The CRC function calculates the Cyclical Redundancy Check (CCITT standard) upon a message.
The first <expr> is the starting index. This value is number of the character in the message where
the CRC16 is to start. The second <expr> is the ending index, usually the $ or $-1 location. The
final <expr> is the initial value for the checksum, usually a 0 or -1.

CRC16
Form: CRC16(<expr>,<expr>,<expr>)

The CRC16 function calculates the Cyclical Redundancy Check upon a message. The first <expr>
is the starting index. This value is number of the character in the message where the CRC16 is to
start. The second <expr> is the ending index, usually the $ or $-1 location. The final <expr> is the
initial value for the checksum, usually a 0 or -1.

The CRC16 is a variation of the CCITT standard CRC and is sometimes called a CRC. The
MODBUS RTU protocol uses the CRC16.

CRCAB
Form: CRCAB(<expr>,<expr>,<expr>)

The CRCAB function calculates the CRC16 Check upon a message while leaving out the $-2 char-
acter. The first <expr> is the starting index. This value is the number of the character in the mes-
sage where the CRC16 is to start. The second <expr> is the ending index, usually the $ location.
The final <expr> is the initial value for the checksum, usually a 0.

The CRCAB is a variation of the CRC16 customized for use with the Allen-Bradley protocols.

CRCBOB
Form: CRCBOB(<expr>,<expr>,<expr>)

44 QUCM Language Functions 5 QUCM Manual

The CRCBOB function calculates the CRC16 Check upon a message while leaving out the $-2
character. The first <expr> is the starting index. This value is the number of the character in the
message where the CRC16 is to start. The second <expr> is the ending index, usually the $ loca-
tion. The final <expr> is the initial value for the checksum, usually a -1.

The CRCAB is a variation of the CRC16 customized for use with BinMaster Smartbob II’s.

CRCDNP
Form: CRCDNP(<expr>,<expr>,<expr>)

The CRCDNP function calculates the CRC16 Check upon a message while leaving out the $-1
character. The first <expr> is the starting index. This value is the number of the character in the
message where the CRC16 is to start. The second <expr> is the ending index, usually the $ loca-
tion. The final <expr> is the initial value for the checksum, usually a 0.

The CRCAB is a variation of the CRC16 customized for use with the DNP 3.00 protocol.

LRC
Form: LRC(<expr>,<expr>,<expr>)

The LRC function calculates the Longitudinal Redundancy Check upon a message. The first
<expr> is the starting index. This value is number of the character in the message where the LRC is
to start. The second <expr> is the ending index, usually the $ or $-1 location. The final <expr> is
the initial value for the checksum, usually a 0 or -1.

The LRC operates upon each byte of the message and the result of the function is a byte.

LRCW
Form: LRCW(<expr>,<expr>,<expr>)

The LRCW function calculates the Longitudinal Redundancy Check upon a message. The first
<expr> is the starting index. This value is number of the character in the message where the LRCW
is to start. The second <expr> is the ending index, usually the $ or $-1 location. The final <expr>
is the initial value for the checksum, usually a 0 or -1.

The LRCW operates upon each word of the message and the result of the function is a word.

SUM
Form: SUM(<expr>,<expr>,<expr>)

The SUM function calculates the straight hex sum of a message. The first <expr> is the starting
index. This value is number of the character in the message where the SUM is to start. The second
<expr> is the ending index, usually the $ or $-1 location. The final <expr> is the initial value for
the checksum, usually a 0 or -1.

The SUM function operates upon each byte of the message and returns a byte.

SUMW
Form: SUMW(<expr>,<expr>,<expr>)

The SUMW function calculates the straight hex sum of a message. The first <expr> is the starting
index. This value is number of the character in the message where the SUMW is to start. The sec-
ond <expr> is the ending index, usually the $ or $-1 location. The final <expr> is the initial value
for the checksum, usually a 0 or -1.

The SUMW function operates upon each word of the message and returns a word.

QUCM Manual 5 QUCM Language Functions 45

Message Description Functions

BCD - Binary Coded Decimal conversion
Usual Format: BCD(Register location, byte count)
or BCD(Register location, VARIABLE)
or BCD(Register location, VARIABLE, Register location)

Valid characters: hexadecimal 00 through 09, 10 through 19 ... 90 through 99.

Transmitting: Converts an expression into its decimal representation, breaks the decimal number
into pairs of digits and then translates each pair of digits into its BCD character.

TRANSMIT format: BCD(<expr>,<expr>)

Receiving: Converts BCD characters into pairs of decimal digits, assembles the pairs into a 16 bit
decimal number and then compares the number to an expression or places the number into an
QUCM register.

ON RECEIVE formats: BCD(<variable>,<expr>) or BCD((<expr>),<expr>)

Note: The QUCM port must be set for 8 bit for BCD to work correctly.

BYTE - Single (lower) byte conversion
Usual Format: BYTE(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its hexadecimal representation and transmits the lower
8 bits as a hexadecimal character.

TRANSMIT format: BYTE(<expr>)

Receiving: Interprets hexadecimal characters as 8-bit hexadecimal numbers and then compares the
numbers to an expression or places the numbers into the lower byte of QUCM registers and zeros
the upper byte of these registers.

ON RECEIVE formats: BYTE(<variable>) or BYTE((<expr>))

Note: If the QUCM port is set to 7 bit then bit 8 will always be zero.

DEC - Decimal conversion
Usual Format: DEC(Register location, byte count)
or DEC(Register location, VARIABLE)
or DEC(Register location, VARIABLE, Register location)

Valid characters: ASCII + (plus sign), - (minus sign) and 0 through 9

Transmitting: Converts an expression into its signed decimal representation, breaks the signed
decimal number into its sign and its digits and then translates each digit into its ASCII character.

TRANSMIT format: DEC(<expr>,<expr>)

After the significant digits the QUCM pads the front of the string with ASCII zeros. Does not
transmit the plus (+) sign for positive numbers but does transmit a minus sign (-) on negative num-
bers.

Receiving: Converts ASCII characters into decimal digits with a sign, assembles the sign and dig-
its into a 16 bit decimal number and then compares the number to an expression or places the num-
ber into an QUCM register.

ON RECEIVE formats: DEC(<variable>,<expr>) or DEC((<expr>),<expr>)

Total number of registers that can be affected: 1

Positive numbers can have a plus (+) sign preceding them but it is not required. Negative numbers
must have a minus (-) sign preceding them.

46 QUCM Language Functions 5 QUCM Manual

HEX - Hexadecimal conversion
Usual Format: HEX(Register location, byte count)
or HEX(Register location, VARIABLE)
or HEX(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and A through F

Transmitting: Converts an expression into its hexadecimal representation, breaks the hexadeci-
mal number into its digits and then translates each hex digit into its ASCII character.

TRANSMIT format: HEX(<expr>,<expr>)

Maximum number of characters that can be sent:

Receiving: Translates ASCII characters into hexadecimal digits, assembles the digits into 16 bit
hex numbers and then compares the numbers to an expression or places the numbers into QUCM
registers.

ON RECEIVE formats: HEX(<variable>,<expr>) or HEX((<expr>),<expr>)

Total number of registers that can be affected: 16 (64 characters)

HEXLC - Lower Case Hexadecimal conversion
Usual Format: HEXLC(Register location, byte count)
or HEXLC(Register location, VARIABLE)
or HEXLC(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and a through f

Transmitting: Converts an expression into its hexadecimal representation, breaks the hexadeci-
mal number into its digits and then translates each hex digit into its ASCII character. Functions the
same as HEX but accepts lower case characters a through f.

TRANSMIT format: HEXLC(<expr>,<expr>)

Maximum number of characters that can be sent: 4

Receiving: Translates ASCII characters into hexadecimal digits, assembles the digits into 16 bit
hex numbers and then compares the numbers to an expression or places the numbers into QUCM
registers. Transmits the hex alpha characters as lower case a through f.

ON RECEIVE formats: HEXLC(<variable>,<expr>) or HEXLC((<expr>),<expr>)

Total number of registers that can be affected: 1 (4 characters)

IDEC conversion
Usual Format: IDEC(Register location, byte count)
or IDEC(Register location, VARIABLE)
or IDEC(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and : ; < = > ?

Transmitting: Converts an expression into its hexadecimal representation, breaks the hexadecimal
number into its digits and then translates each hex digit into its pseudo-ASCII character. In
pseudo-ASCII, hex digits 0 through 9 are there normal ASCII characters while hex digits A
through F are replaced by the hex characters 3A through 3F which are the ASCII characters : ; < =
> and ?.

TRANSMIT format: IDEC(<expr>,<expr>)

Receiving: Converts pseudo-ASCII characters into hexadecimal digits, assembles the digits into 16
bit hexadecimal numbers and then compares the numbers to an expression or places the numbers
into QUCM registers.

ON RECEIVE formats: IDEC(<variable>,<expr>) or IDEC((<expr>),<expr>)

QUCM Manual 5 QUCM Language Functions 47

Note: This is the format that the IDEC processors and other devices use to pass register values. If
communicating to an IDEC processor, a Square D Model 50 or Micro-1, or any other devices that
use this pseudo-ASCII protocol this is a useful function.

LONG

Usual Format: LONG(Variable name)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 32-bit hexadecimal representation,
translates the 32-bit number into four 8-bit hexadecimal numbers and transmits
the bytes in order of descending significance. If the variable VAR of type long
contains 0x12345678, the four bytes would be transmitted: x12, x34, x56, x78.

TRANSMIT format: LONG(<expr>)

Receiving: Interprets four hexadecimal characters as four 8-bit hexadecimal numbers,
assembles the four 8-bit numbers into a 32-bit number, first number the high
byte, the second number in the second most significant byte, and the fourth
number the low byte, and then compares the number to an expression or places
the number into an QUCM variable.

ON RECEIVE formats: LONG(<variable>) or LONG((<expr>))

OCT - Octal conversion
Usual Format: OCT(Register location, byte count)

Valid characters: ASCII 0 through 7

Transmitting: Converts an expression into its octal representation, breaks the octal number into its
digits and then translates each digit into its ASCII character.

TRANSMIT format: OCT(<expr>,<expr>)

Receiving: Converts ASCII characters into octal representation.

ON RECEIVE formats: OCT(<variable>,<expr>) or OCT((<expr>),<expr>)

RAW - Raw register conversion
Usual Format: RAW(Register location, byte count)
or RAW(Register location, VARIABLE)
or RAW(Register location, VARIABLE, Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts registers into their hexadecimal representation and translates each 16-bit
hexadecimal number into a pair of 8-bit hexadecimal characters.

TRANSMIT format: RAW(<variable>,<expr>)

Receiving: Interprets hexadecimal characters as 8-bit hexadecimal numbers, assembles each pair
of 8-bit numbers into a 16-bit hexadecimal number, high byte then low byte, and then compares the
numbers to an expression or places the numbers into QUCM registers.

ON RECEIVE formats: RAW(<variable>,<expr>) or RAW((<expr>),<expr>)

Note: If the QUCM port is set to 7 bit then bit 8 and bit 16 will always be 0. RAW is an expanded
version of SY/MAX packed ASCII and can be used to transmit and receive packed ASCII charac-
ters as well as 8-bit characters.

RWORD
Usual Format: RWORD(Register location)

48 QUCM Language Functions 5 QUCM Manual

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 16-bit hexadecimal representation, translates the 16-
bit number into a pair of 8-bit hexadecimal numbers and transmits the lower eight bits and then the
upper 8 bits as hexadecimal characters.

TRANSMIT format: RWORD(<expr>)

Receiving: Interprets two hexadecimal characters as two 8-bit hexadecimal numbers, assembles
the two 8-bit numbers into a 16-bit number, first number low byte and second number high byte,
and then compares the number to an expression or places the number into an QUCM register.

ON RECEIVE formats: RWORD(<variable>) or RWORD((<expr>))

Note: Like WORD but in the reverse order, low byte then high byte.

TON - Translate on
The commands TON and TOFF work with the TRANSLATE command. The TRANSLATE com-
mand defines a string that is to be translated into another string. This is used when a character has
reserved meaning but could also be used in the translation of data. Up to 8 TRANSLATE strings
can be contained in an QUCM program.

An example: the escape character (hex 1B) could be used to interrupt a transmission but hex 1B
might also be valid data. When the remote process wants to interrupt transmission it sends a single
hex 1B. But when the remote process wants to send data containing hex 1B it sends 1B1B and the
QUCM is responsible for interpreting two hex 1Bs as a single 1B instead of as an escape. In this
case the translate command would be:

TRANSLATE 1:"\1B\1B" = "\1B"
and the command for receiving data that might contain a hex 1B:

ON RECEIVE TON(1):RAW(STRINGVAR,15):TOFF(1)
The TON command turns on translation during an ON RECEIVE or TRANSMIT. The format for
turning translation on is TON(<expr>) where <expr> is the translation number and must evaluate
to be between 1 and 8. The TON is usually followed by a TOFF.

TOFF - Translate off
The TOFF command turns off translation during an ON RECEIVE or TRANSMIT. The format for
turning translation off is TOFF(<expr>) where <expr> is the translation number and must evaluate
to be between 1 and 8.

UNS - Unsigned decimal conversion

Usual Format: UNS(Register location, byte count)
or UNS(Register location, VARIABLE)
or UNS(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9

Transmitting: Converts an expression into its unsigned decimal representation,
breaks the unsigned decimal number into its digits and then translates each
digit into its ASCII character.

TRANSMIT format: UNS(<expr>,<expr>)

Receiving: Converts ASCII characters into decimal digits, assembles the digits into a
16 bit unsigned decimal number and then compares the number to an expres-
sion or places the number into an QUCM register.

ON RECEIVE formats: UNS(<variable>,<expr>) or UNS((<expr>),<expr>)

Total number of registers that can be affected: 1

QUCM Manual 5 QUCM Language Functions 49

WORD

Usual Format: WORD(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 16-bit hexadecimal representation,
translates the 16-bit number into a pair of 8-bit hexadecimal numbers and
transmits the upper eight bits and then the lower 8 bits as hexadecimal charac-
ters.

TRANSMIT format: WORD(<expr>)

Receiving: Interprets two hexadecimal characters as two 8-bit hexadecimal numbers,
assembles the two 8-bit numbers into a 16-bit number, first number the high
byte and second number the low byte, and then compares the number to an ex-
pression or places the number into an QUCM register.

ON RECEIVE formats: WORD(<variable>) or WORD((<expr>))

Note: Like RWORD but always high byte then low byte. Also like RAW(<variable>,2).

Other Functions

APPLICATION
The APPLICATION internal variable returns a value of 1 or 2, indicating which application area
the program is running in. A program which is loaded into application area 2 of a QUCM will read
this variable as 2.

CHANGED
Format: CHANGED(<variable>) or CHANGED(<variable> & <expr>)

The CHANGED function provides a boolean result dependent upon whether the evaluated register
or mask of the register has been altered from the last operation of this function. The first occur-
rence of the CHANGED function will result in a FALSE regardless of the state of the evaluated
register.

The CHANGED function is used in any place referred to as <logical>, such as:
 IF CHANGED(OUTPUT[56]) THEN GOTO reply

The CHANGED function is similar to the ON CHANGE statement, but the CHANGED function
allows program execution to continue running instead of pausing to wait for the change to occur.

MAX
Format: MAX(<expr>,<expr>)

The MAX function provides a result of the <expr> which evaluates to the larger of the two expres-
sions.

MIN
Format: MIN(<expr>,<expr>)

The MIN function provides a result of the <expr> which evaluates to the smaller of the two expres-
sions.

SWAP
Format: SWAP(<expr>)

The SWAP function reverses the byte order of the result of the <expr>. If OUTPUT[4] = xABCD
then SWAP(OUTPUT[4]) would bring the result xCDAB.

50 QUCM Language Functions 5 QUCM Manual

THREAD
The THREAD variable returns a value for the thread number where the variable is called. Valid
results are 1-8 inclusive.

RTS
RTS is a variable which may be used to control the state of the Request to Send line for a QUCM
port. SET PORT 1 RTS ON will assert the RTS line. SET PORT 2 RTS OFF will negate the RTS
line. SET PORT 1 RTS AUTO will force RTS to be in "push-to-talk" mode.

CTSx
CTSx is a variable which gives the current state of Clear to Send on the QUCM port. CTS1 pro-
vides the state for port 1 while CTS2 is for port 2. IF CTSx = TRUE then CTS is asserted by the
external device. If CTSx = FALSE then CTS is negated.

QUCM Manual 6 Examples 51

6

Examples

TRANSMIT message function with register references
In the following TRANSMIT examples the following initial conditions are assumed:

TRANSMIT HEX
Command: TRANSMIT HEX(OUTPUT[23],4)
ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],2)
ASCII Characters transmitted: B2
Decimal values: 66 50
Hex values: 42 32

Command: TRANSMIT HEX(OUTPUT[23],8)
ASCII Characters transmitted: 0000A1B2
Decimal values: 48 48 48 48 65 49 66 50
Hex values: 30 30 30 30 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE)
ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE R[600])
ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32

QUCM
Register

Decimal Signed
Decimal

Hex Octal Binary

OUTPUT[23] 41394 24142 A1B2 120662 1010 0001 1011 0010

OUTPUT[24] 20318 20318 4F5E 47536 0100 1111 0101 1110

52 Examples 6 QUCM Manual

OUTPUT[600] would then equal 4.

TRANSMIT DEC
Command: TRANSMIT DEC(OUTPUT[23],6)
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],5)
ASCII Characters transmitted: 24142
Decimal values: 50 52 49 52 50
Hex values: 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],12)
ASCII Characters transmitted: -00000024142
Decimal values: 45 48 48 48 48 48 48 50 52 49 52 50
Hex values: 2D 30 30 30 30 30 30 32 34 31 34 32

Command: TRANSMIT DEC(OUTPUT[23],VARIABLE)
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32

Command: TRANSMIT HEX(OUTPUT[23],VARIABLE LENGTHVARIABLE)
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32
R[600] would then equal 6.

TRANSMIT UNS
Command: TRANSMIT UNS(OUTPUT[23],5)
ASCII Characters transmitted: 41394
Decimal values: 52 49 51 57 52
Hex values: 34 31 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],3)
ASCII Characters transmitted: 394
Decimal values: 51 57 52
Hex values: 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],8)
ASCII Characters transmitted: 00041394
Decimal values: 48 48 48 52 49 51 57 52
Hex values: 30 30 30 34 31 33 39 34

Command: TRANSMIT UNS(OUTPUT[23],8)
ASCII Characters transmitted: 00041394
Decimal values: 48 48 48 52 49 51 57 52
Hex values: 30 30 30 34 31 33 39 34

TRANSMIT OCT
Command: TRANSMIT OCT(OUTPUT[23],6)
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32

Command: TRANSMIT OCT(OUTPUT[23],3)
ASCII Characters transmitted: 662
Decimal values: 54 54 50
Hex values: 36 36 32

QUCM Manual 6 Examples 53

Command: TRANSMIT OCT(OUTPUT[23], VARIABLE)
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32

Command: TRANSMIT OCT(OUTPUT[23], VARIABLE R[600])
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32
R[600] would then equal 6.

TRANSMIT BCD
Command: TRANSMIT BCD(OUTPUT[23],3)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94

Command: TRANSMIT BCD(OUTPUT[23],1)
ASCII Characters transmitted: {not ASCII character}
Decimal values: 148
Hex values: 94

Command: TRANSMIT BCD(OUTPUT[23],5)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 0 0 4 19 148
Hex values: 00 00 04 13 94

Command: TRANSMIT BCD(OUTPUT[23], VARIABLE)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94

Command: TRANSMIT BCD(OUTPUT[23], VARIABLE OUTPUT[600])
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94
OUTPUT[600] would then equal 3.

ON RECEIVE message functions with register references
In the following ON RECEIVE examples it assumed that a WAIT follows immediately after the ON
RECEIVE command, there are no other ON RECEIVEs set up for the WAIT and the incoming string is
the following group of ASCII characters:

D876543F

Before the WAIT is executed, the following initial conditions are present:

Several of the examples have remaining characters. The remaining characters will be received by the
QUCM and buffered until the next ON RECEIVE is reached by the program. This is not good pro-
gramming practice unless these characters are meant to be handled elsewhere in the program. If they
are not handled correctly, ON RECEIVEs later in the program may give unexpected results.

QUCM
Register

Hex Unsigned
Decimal

Decimal Octal Binary

OUTPUT[23] A1B2 41394 -24142 120662 1010 0001 1011 0010

OUTPUT[24] 03F5 1013 1013 1765 0000 0011 1111 0101

54 Examples 6 QUCM Manual

ON RECEIVE HEX

Command: ON RECEIVE HEX(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D876
Translated to: hex D876

Remaining characters: "543F"

Command: ON RECEIVE HEX(OUTPUT[23],8) RETURN
Results after WAIT:
Characters used: D876543F
Translated to: hex D876 and hex 543F

Note: Every character is used by this HEX function. The string was meant for
a statement similar to this one, in that it handles all of the characters.

Command: ON RECEIVE HEX(R[23],2) RETURN
Results after WAIT:
Characters used: D8
Translated to: hex D8

Remaining characters: "76543F"

ON RECEIVE DEC

Command: ON RECEIVE DEC(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D8765
Translated to: decimal 8,765

Note: The first received character "D" is ignored by the DEC() function. This
is all right but if a D is always the leading character then a program
statement like ON RECEIVE "D":DEC(OUTPUT[23],4) may be better.

Hex Unsigned
decimal

Decimal Binary

Register 23 D876 55,414 -10,122 1101 1000 0111 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 1001

Hex Unsigned
decimal

Decimal Binary

Register 23 D876 55,414 -10,122 1101 1000 0111 0110

Register 24 543F 21,567 21,567 1001 1000 0011 1111

Hex Unsigned
decimal

Decimal Binary

Register 23 00D8 216 216 0000 0000 1101 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 223D 8,765 8,765 0010 0010 0011 1101

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

QUCM Manual 6 Examples 55

Remaining characters: "43F"

Command: ON RECEIVE DEC(OUTPUT[23],5) RETURN
Results after WAIT:
Characters used: D87654
Translated to: decimal 87,654%65,536 = 22,118

Note: The first "D" is ignored similar to the previous ON RECEIVE..
Remaining characters: "3F"

Command: ON RECEIVE DEC(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D87
Translated to: decimal 87

Note: The "D" is ignored as above.
Remaining characters: "6543F"

ON RECEIVE UNS

Command: ON RECEIVE UNS(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D8765
Translated to: unsigned decimal 8,765

Note: the first received character "D" is ignored by the UNS() function.
Remaining characters: "43F"

Command: ON RECEIVE UNS(OUTPUT[23],5) RETURN
Results after WAIT:
Characters used: D87654
Translated to: unsigned decimal 87,654%65,536 = 22,118

Hex Unsigned
decimal

Decimal Binary

Register 23 5666 22,118 22,118 0101 0110 0110 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 0057 87 87 0000 0000 0101 0111

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 223D 8,765 8,765 0010 0010 0011 1101

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 5666 22,118 22,118 0101 0110 0110 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

56 Examples 6 QUCM Manual

Note: The "D" is ignored. The next five characters "87654" do not make a
valid unsigned decimal number and so the UNS() function takes the in-
coming number and does a modulus 65,536. In this case the result is
22,118.

Remaining characters: "3F"

Command: ON RECEIVE UNS(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D87
Translated to: decimal 87

Note: The "D" is ignored.
Remaining characters: "6543F"

ON RECEIVE OCT

Command: ON RECEIVE OCT(R[23],5) RETURN
Results after WAIT:
Characters used: D876543
Translated to: octal 76543

Note: The first two received characters "D8" are not octal digits and are ig-
nored by the OCT() function.

Remaining characters: "F"

Command: ON RECEIVE OCT(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D876
Translated to: octal 76

Note: The "D" and the "8" are ignored.
Remaining characters: "543F"

Command: ON RECEIVE OCT(OUTPUT[23],6) RETURN
Results after WAIT:
Characters used: D876543F
Translated to: nothing

Hex Unsigned
decimal

Decimal Binary

Register 23 0057 87 87 0000 0000 0101 0111

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 7D63 32,099 32,099 0111 1101 0110 0011 076543

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 003E 62 62 0000 0000 0011 1110 000076

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

QUCM Manual 6 Examples 57

Note: Since "D", "8" and "F" are not valid octal characters they are lost by the
OCT command. Between the "8" and the "F" the octal characters
"76543" were received, which is only 5 characters instead of the 6 re-
quired by this ON RECEIVE. Since the next character "F" was not an
octal character the previous 5 characters are ignored as not matching 6
octal characters in a row. So, not enough octal characters have been
transmitted for this command. If this command is used without an ON
TIMEOUT then the program will wait until 6 octal characters in a row
are sent before completing this ON RECEIVE. Also note that register
23 has not yet changed.

Remaining characters: None - waiting for 6 octal characters in a row

ON RECEIVE BCD

Command: ON RECEIVE BCD(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44 and 38)
Translated to: decimal 4,438

Note: The first two received characters "D" and "8" are used by the BCD()
function. The "D" is a hex character 44 and the "8" is a hex character 38
and so the unsigned decimal value is 4438.

Remaining characters: "76543F"

Command: ON RECEIVE BCD(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D876 (hexadecimal 44 38 37 36)
Translated to: decimal 44,383,736 converted to 15,864

Note: Both register 23 were changed
Remaining characters: None

ON RECEIVE RAW

Command: ON RECEIVE RAW(OUTPUT[23],2) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44 38)

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 A1B2 41,394 -24,142 1010 0001 1011 0010 120662

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

Hex Unsigned
decimal

Decimal Binary

Register 23 1156 4,438 4,438 0001 0001 1001 1010

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 6AF8 15,864 15,864 0110 1010 1111 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

58 Examples 6 QUCM Manual

Translated to: hexadecimal 4438

Note: The "D" is a hex 44 and the "8" is a hex 38 so register 23 is now 4438
Remaining characters: "76543F"

Command: ON RECEIVE RAW(OUTPUT[23],1) RETURN
Results after WAIT:
Characters used: D (hexadecimal 44)
Translated to: hexadecimal 4400

Note: The RAW function places the first character into the upper bits of the
register and zeros the rest of the bits.

Remaining characters: "876543F"

Command: ON RECEIVE RAW(OUTPUT[23],4) RETURN
Results after WAIT:
Characters used: D876 (hexadecimal 44 38 37 36)
Translated to: hexadecimal 4438 and 3736

Note: RAW changed both register 23 and 24
Characters remaining: "543F"

ON RECEIVE BYTE

Command: ON RECEIVE BYTE(OUTPUT[23]) RETURN
Results after WAIT:
Characters used: D (hexadecimal 44)
Translated to: hexadecimal 0044

Note: Only OUTPUT[23] is changed.
Characters remaining: "876543F"

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 4400 17,408 17,408 0100 0100 0000 0000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 3736 14,134 14,134 0011 0111 0011 0110

Hex Unsigned
decimal

Decimal Binary

Register 23 0044 68 68 0000 0000 0100 0100

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

QUCM Manual 6 Examples 59

ON RECEIVE WORD

Command: ON RECEIVE WORD(OUTPUT[23]) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44, 38)
Translated to: hexadecimal 4438

Note: Only OUTPUT[23] is changed.
Characters remaining: "76543F"

ON RECEIVE RWORD

Command: ON RECEIVE RWORD(OUTPUT[23]) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44, 38)
Translated to: hexadecimal 3843

Note: Only OUTPUT[23] is changed.
Characters remaining: "76543F"

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 3843 14,403 14,403 0011 1000 0100 0011

Register 24 03F5 1.013 1.013 0000 0011 1111 0101

QUCM Manual 7 Compiling 61

7

Compiling

QCOMPILE.EXE
QCOMPILE.EXE is an MS-DOS compatible program for compiling the QUCM configuration text file
into machine readable code. All QUCM configurations must be compiled before they can be down-
loaded into the QUCM. The downloading is done by another MS-DOS compatible program QUCM-
LOAD.EXE described in a later section of the manual.

The QCOMPILE command syntax is as follows:

QCOMPILE filename[.ext] [-Ofile2] [-Dmacro=string] [-L file3] [-S] [-W]

Where filename refers to the text file containing the source code for the QUCM.

The .ext is an optional extension to the filename. If no extension is included then .QUCM is assumed
by the compiler.

Options can appear in any order. Additional options may be displayed by using -? as an option.

-O option

The -O option is for specifying an output file other than filename.ucc. If the -O option is not used then
COMPILE will create the output file filename.ucc. If the -O option is used then COMPILE will create
an output file named file2. If an extension is desired for file2 it needs to be added since no extension is
assumed by the compiler.

-D option

The -D option is for specifying DEFINE macros at compile time. This is very useful for compiling one
QUCM configuration file for more than 1 port of the same QUCM module. The macro portion of the
-D option is the string inside of the QUCM configuration file that is to be found while string portion is
macro’s replacement. It is equivalent to Find what: macro Change to: string in DOS EDIT.

If, in the configuration file AMAZING.QUCM, the word Time has been used and Time needs to have a
value of 50 then the DOS command to compile AMAZING with the Time replacement is:

QCOMPILE AMAZING -DTime=50

If the compile completes with no errors then the output file AMAZING.UCC will be created. If more
than one DEFINE is needed at compile time then they can be added to the end of the COMPILE com-
mand as in:

62 Compiling 7 QUCM Manual

COMPILE AMAZING -DTime=50 -DPort=1 -DFlavor=strawberry

-L option

The -L option is for telling the compiler to also generate a 68000 source listing. The name of the DOS
text file is file3. If an extension is desired for file3 it needs to be added since no extension is assumed
by the compiler.

The 68000 source listing, file3, is a text file that can be read by your favorite text editor. If you have
any questions about the way the compiler generates code for the QUCM then you can use the -L option.
Most users will not have a use for this option.

-S option

The -S option is for generating a list of the location of each declared variable. The variables are located
in the 6x file areas of the QUCM. Application 1 variables are located in file 384. Application 2 vari-
ables are located in file 640.

The variable list is displayed as a table, sorted by the order that the variables were declared. The table
has columns that show the variable’s byte address, register address, type, number of elements (if appli-
cable), number of bytes, and what thread they were assigned to.

-W option

The -W option disables warnings that indicate possible trouble but do not prohibit the program from
successfully compiling. Mostly used for disabling the warning "Program is too large" warnings on
large applications that use the optional large flash for application 2.

Compiler Errors
When the QUCM configuration file contains code that the compiler does not recognize, variables out of
range, code that is too long or any other error then the compiler generates an error listing. This listing
will have the compiler error number, the line number in the .QUCM file where the error occurred, a
copy of the line in question, and a description of the error. The listing will also summarize the total
number of errors detected.

The programmer can use this listing to correct problems in the QUCM configuration file. Since no ob-
ject code is generated if an error occurs during the compile, all errors must be repaired before a valid
object file can be made for downloading into the QUCM.

Debugging

For debugging purposes the user may want to store the error listing in a file in order to refer to it later.
This can be accomplished with the output redirection feature of DOS. For example:

COMPILE filename >error.lst

The text that normally would go to the screen will now appear in the text file error.lst .

A complete listing of the compiler errors appears in Chapter <Compiler error chapter> - <Compiler
error chapter>.

QUCM Manual 8 Downloading Compiled Code 63

8

Downloading Compiled Code

QLOAD.EXE
The program QLOAD.EXE is a Windows program that will download compiled applications into a
QUCM via Modbus serial or TCP/IP Ethernet.

Figure 8-1 Ethernet QLOAD

64 Downloading Compiled Code 8 QUCM Manual

Figure 8-2 Serial QLOAD

Options:
 Application 1 Loads Application into the first Application area.
 Application 2 Loads Application into the second Application area.
 Status Register 3x Register for the status of the Application.
 Run Pointer 4x Register that points to the Status Register.
 Auto Start Enables Autostart for the Application.
 Erase Flash Erases Application area before writing new App.
 Load File Loads new Application into Application area.
 Set Defaults Sets all options to factory default.
 Start Download Begins file transfer to QUCM.
 Cancel Closes the QLOAD window.
Modbus TCP Options:
 First Line IP address of QUCM to be loaded.
 TCP Port Modbus TCP port for connecting to the QUCM.
 Modbus Drop Modbus drop of QUCM.
Modbus Serial Options:
 First Line COM: port of PC connected to the QUCM.
 Baud Baud rate of QUCM serial port.
 Modbus Drop Modbus drop of QUCM.
 ASCII Select to change from Modbus RTU to Modbus ASCII.
 7/8 Bits Select radio button for number of data bits.
 Parity Parity selection.

Example:
The file HELLO.qcc is a simple QUCM Application that interacts with Hyperterminal to produce mes-
sages on the PC’s screen based on what the user types in. This application is to be loaded into Applica-
tion 1.

To load the file from COM1 of a PC with an MM1 serial cable to one of the serial ports on the QUCM-
OE simply do the following:

1 Move the switches for Applications 1 and 2 to HALT.

2 Connect the MM1 to the PC’s COM1 port and one of the serial ports on the QUCM-OE.

3 In Windows, go to Start-->Programs-->Niobrara-->QUCM-->QLOAD.

4 Click the Browse... button, then browse to C:\Niobrara\Apps\QUCM\hello.qcc.

QUCM Manual 8 Downloading Compiled Code 65

5 Make sure the Modbus Serial page is selected.

6 Keep the default settings, and click the Start Download button.

This will start loading the application and set it to automatically start on power cycles. HELLO.qcc is a
relatively small Application and takes only a minute to download via Modbus RTU serial at 9600 baud.
However, for larger Applications, it is advisable to set up the Ethernet port on the QUCM-OE for
Modbus/TCP operation and then use the Ethernet port of the PC for the QLOAD. To set the IP parame-
ters in the QUCM do the following:

1 Move the switches for Applications 1 and 2 to HALT.

2 Connect the MM1 to the PC’s com1 port and one of the serial ports on the QUCM-OE.

3 From the command line on the computer enter:
>zapreg32 com1:9600,e,8,1 255 -b

This will bring up a copy of zapreg32 in Modbus RTU mode to allow direct editing of the Holding
registers in the QUCM.

4 Move to register 46 and enter the most significant portion of the IP address in the unsigned column
The remaining IP parameters are stored in registers 47 through 56. See the Table below:

5 Exit ZAPREG32 after entering the IP parameters by pressing ESC.

6 Verify the IP operation of the computer and QUCM-OE by using the PING utility. If it is success-
ful the output from PING should look something like the following:
>ping 10.10.10.10
Pinging 10.10.10.10 with 32 bytes of data:
Reply from 10.10.10.10: bytes=32 time=10ms TTL=128
Reply from 10.10.10.10: bytes=32 time<10ms TTL=128
Reply from 10.10.10.10: bytes=32 time<10ms TTL=128
Reply from 10.10.10.10: bytes=32 time<10ms TTL=128
If the ping fails then verify the IP operation of the PC, check that the QUCM’s LINK light is on,
check the Ethernet cabling and hubs, etc.

7 Once the QUCM is responding to PINGs from the PC proceed to the QLOAD in the same manner
as above, but with the Modbus TCP option selected.

8 Enter the IP address of the QUCM, keep the default settings, and click Start Download.
This download will be much quicker than the serial download.

QUCM Output
Register

Example
(DEC)

Description

46 10

47 10

48 10

49 10

IP Address for 10.10.10.10(factory default as
of 11Feb04)

50 255

51 255

52 255

53 0

Subnet Mask for 255.255.255.0

54 206

55 223

56 51

57 1

Default Gateway for 206.223.51.1

QUCM Manual 9 Connector Pinouts 67

9

Connector Pinouts

RS-232 ports on QUCM (RJ45 socket)

Figure 9-1 Ports 1 and 2 RJ45

Table 9-1 RS-232 Pinout

Pin 1

Pin 8

Plug Pin 1

Plug Pin 8

Pin Function Notes

1 +5VDC From Quantum Power Supply

2 DSR Not used

3 TX Transmit

4 RX Receive

5 SG Signal Ground

6 RTS Push to Talk Request To Send

7 CTS CTS must be high to transmit

8 Frame Ground

68 Connector Pinouts 9 QUCM Manual

RS-422/485 ports on QUCM (RJ45 socket)

Figure 9-2 Ports 1 and 2 RJ45

Table 9-2 RS-485 Pinout

The NR&D BB-85 may be used to bring the RS-485 signal lines out to a removable Screw Terminal
block. The BB-85 is a small DIN-rail mounted block which connects to the QUCM serial port with an
included straight-through RJ-45 to RJ-45 cable (the NR&D MM0, or a Twisted Pair Ethernet patch ca-
ble may be used).

For 2-wire RS-485 applications, Rx+ and Tx+ must be tied together outside the QUCM, and Rx- and
Tx- must also be tied together outside the QUCM.

10BaseT (Twisted Pair) Ethernet port on QUCM (RJ45 socket)

Pin 1

Pin 8

Pin Function Notes

1 Rx- Input to QUCM

2 Rx+ Input to QUCM

3 Tx+ Output from QUCM

4 N/C

5 SG Signal Ground

6 Tx- Output from QUCM

7 N/C

8 Frame Ground

Pin 1

Pin 8

QUCM Manual 9 Connector Pinouts 69

Figure 9-3 Ethernet Port RJ45

Table 9-3 10BaseT Pinout

Pin Function

1 TX+

2 TX-

3 RX+

6 RX-

QUCM Manual 10 Recommended Cabling 71

10

Recommended Cabling

Cabling required to configure a QUCM
Configuration files are downloaded from an MS-DOS personal computer into the QUCM. The factory
default configuration for the module is that all ports not running a user program are Modbus RTU, 9600
baud, 8 data bits, EVEN parity, 1 stop bit which may be used for downloading user programs or for
viewing and modifying QUCM registers. The correct cabling needs to be installed to connect the per-
sonal computer to a QUCM port.

QUCM RS-232 to personal computer cabling

A connection to the RS-232 port of the PC may be made to either of the RS-232 ports of the module.

QUCM RS-232 to RS-232 PC DCE Port (9-pin) (MM1 Cable)

The Niobrara MM1 cable may be used for connecting the QUCM to a personal computer.

QUCM RS-232 to 9-pin Modicon RS-232
The Niobrara MM2 cable may be used to connect the QUCM RS-232 port to a Modicon Quantum PLC
serial port.

RJ45 DE9P (female)

3 2

4 3

5 5

2 4

7 6

6 7

8

72 Recommended Cabling 10 QUCM Manual

QUCM RS-232 to Quantum RS-232 Port (9-pin) (MM2 Cable)

QUCM RS-232 to 9-pin DTE
The Niobrara MM3 cable may be used to connect the QUCM RS-232 port to a 9-pin DCE device. This
cable gives the QUCM a standard PC type 9-pin male connector. The MM3 may be used in conjunc-
tion with the MM1 to connect two Modicon type RJ45 serial ports together. The MM3 may be used
with a Niobrara SC902 cable to connect a Modicon type RJ45 RS-232 serial port to a SY/MAX type
RS-422 port.

QUCM RS-232 to RS-232 DTE Port (9-pin) (MM3 Cable)

The Niobrara MM3 cable may be used for providing the QUCM with a 9-pin port that acts like a per-
sonal computer’s serial port.

QUCM RS-232 to 25-pin DTE
The Niobrara MM4 cable may be used to connect the QUCM RS-232 port to a 25-pin DCE device such
as a modem or a Cutler-Hammer MINT II.

RJ45 DE9P (male)

3 2

4 3

5 5

2 4

7 6

6 7

8

RJ45 DE9P (male)

3 3

4 2

5 5

6 7

7 8

4

6

QUCM Manual 10 Recommended Cabling 73

QUCM RS-232 to RS-232 DTE Port (25-pin) (MM4 Cable)

The Niobrara MM4 cable may be used to connect the QUCM-S to a modem.

QUCM RS-485/422 to SY/MAX 9-pin Port
When a non-isolated connection can be made between the QUCM and a SY/MAX pinout port, a
Niobrara MM7 cable may be used.

QUCM RS-422/485 to SY/MAX pinout 9-pin port (MM7 Cable)

QUCM RS-485/422 as a SY/MAX 9-pin Port
When it is desirable for the QUCM to act as a SY/MAX port, a Niobrara MM8 cable may be used.

QUCM RS-422/485 as SY/MAX pinout 9-pin port (MM8 Cable)

RJ45 DE25P (male)

3 2

4 3

5 7

6 4

7 5

6

8

20

RJ45 DE9P (male)

1 1

2 2

3 4

6 3

5

6

7

8

Cable Shield 9

RJ45 DE9S (female)

1 3

2 4

3 2

6 1

74 Recommended Cabling 10 QUCM Manual

Isolated Cabling to SY/MAX Port
The Niobrara DDC2I Isolated RS-232<>RS-422/485 converter provides an optically isolated connec-
tion from the QUCM to a SY/MAX pinout device. A Niobrara MM0 cable is used to connect the RS-
232 port on the QUCM to the RJ45 port on the DDC2I. A Niobrara DC1 cable is used to connect the
9-pin RS-422 port on the DDC2I to the SY/MAX device. The DIP switches on the DDC2I should be
set for 4-Wire, Bias, and Termination. The QUCM will provide the power for the DDC2I.

The Niobrara MM3 and SC902 cables may also be used together to provide a non-isolated connection
between the QUCM-S and a SY/MAX port.

QUCM RS-232 to RS-232 DDC2I Port (MM0 Cable)

RJ45
1

DE9S (female)
1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

QUCM Manual A Downloading New Firmware 75

Appendix A

Downloading New Firmware

QUCM
As new features and fixes are added to the QUCM, it may become necessary for the user to upgrade
their firmware to take advantage of these changes. The QUCM’s operating firmware is stored in
FLASH memory and may be downloaded through serial Port 1 using an RS-232 cable and a special
program called FWLOAD32.EXE or over a Modbus or Modbus/TCP connection using QLOAD.

QLOAD Operation
QLOAD may be used to upgrade the firmware in the QUCM by loading a special version of the firm-
ware that has been compiled as a .QCC. The new firmware must be qloaded into application 1 and set
for automatic start. The RUN 1 switch must also be set to RUN. The QLOAD operation replaces the
normal application in Application 1 with the new firmware. As the new firmware application begins to
run, it takes over the QUCM hardware and upgrades itself. The upgrade process takes about 20 seconds
and the QUCM is completely disabled during this time. After the completion of the upgrade, the
QUCM reboots and runs the new firmware. Application 1 is now erased and the original application
must be reloaded.

Using QLOAD to upgrade the firmware in the QUCM can have great advantages over FWLOAD32. It
is possible to QLOAD new firmware over the Ethernet connection using Modbus/TCP and thus allow
remote upgrades over a LAN, WAN, or Internet. QLOAD may also be used to upgrade firmware over
a Modbus RTU serial connection which may be handy in modem applications. Moving the switch on
the rear of the QUCM is not required so the entire operation may be accomplished remotely.

1 Make sure that the RUN1 switch is in RUN.

2 QLOAD the file qucmtcpl.qcc into application 1 just as a normal loading of application 1.

3 After the QLOAD is completed, wait approximately 20 seconds for the firmware upgrade to com-
plete.

4 QLOAD the original Application 1 back into the unit and it is ready to operate.

Note: If at any point during this procedure the download fails, it will be necessary to reboot the
QUCM before trying again.

76 Downloading New Firmware A QUCM Manual

FWLOAD32 Operation
Sometimes it may be necessary to use FWLOAD32 to upgrade the firmware in the QUCM. FWLOAD
requires a direct serial connection to Port 1 of the QUCM and removal of power and changing of the
switch on the back of the QUCM from RUN to LOAD. FWLOAD is faster than QLOAD over a serial
connection and it is not necessary to reload application 1 when finished.

1 Remove the QUCM from the rack.

2 Locate the slide switch on the back of the module and move the switch to the LOAD (down) posi-
tion.

3 Install the QUCM in the rack. The lights should flash the normal boot sequence and finish with
the only the RUN and #3 lights on.

4 Connect the personal computer to Port 1 of the QUCM with an MM1 cable.

5 If the QUCM is an -O or a -OE model, put port 1’s selector switch in the RS-232 position.

6 Run the program FWLOAD32.EXE with the following parameters:
c:\qucm\fwload qucmtcp.fwl com1:

if using the PC’s com1 for the serial connection or substitute the appropriate COMx: port.

7 After the completion of the download, the program will end.

8 Remove the QUCM from the rack and move the slide switch back to RUN.

9 Install the QUCM in the rack and it should be ready for service. It may be necessary to download
the Applications before returning the unit to service.

Note: If at any point during this procedure the download fails, it will be necessary to reboot the QUCM
before trying again.

QUCM Manual A Downloading New Firmware 77

MEM Clear

RUN

LOAD.
Firmware Switch

78 Downloading New Firmware A QUCM Manual

QUCM Manual A Downloading New Firmware 79

QUCM Manual B ASCII Table 81

Appendix B

ASCII Table

Table

Table B-1 lists the common ASCII Characters and their decimal and hex values.

82 ASCII Table B QUCM Manual

Table B-1 ASCII Table

Hex Dec Character Description Abrv Hex Dec Char. Hex Dec Char. Hex Dec Char.

00 0 [CTRL]@ Null NUL 20 32 SP 40 64 @ 60 96 ‘

01 1 [CTRL]a Start Heading SOH 21 33 ! 41 65 A 61 97 a

02 2 [CTRL]b Start of Text STX 22 34 " 42 66 B 62 98 b

03 3 [CTRL]c End Text ETX 23 35 # 43 67 C 63 99 c

04 4 [CTRL]d End Transmit EOT 24 36 $ 44 68 D 64 100 d

05 5 [CTRL]e Enquiry ENQ 25 37 % 45 69 E 65 101 e

06 6 [CTRL]f Acknowledge ACK 26 38 & 46 70 F 66 102 f

07 7 [CTRL]g Beep BEL 27 39 ’ 47 71 G 67 103 g

08 8 [CTRL]h Back space BS 28 40 (48 72 H 68 104 h

09 9 [CTRL]i Horizontal Tab HT 29 41) 49 73 I 69 105 i

0A 10 [CTRL]j Line Feed LF 2A 42 * 4A 74 J 6A 106 j

0B 11 [CTRL]k Vertical Tab VT 2B 43 + 4B 75 K 6B 107 k

0C 12 [CTRL]l Form Feed FF 2C 44 , 4C 76 L 6C 108 l

0D 13 [CTRL]m Carriage Return CR 2D 45 - 4D 77 M 6D 109 m

0E 14 [CTRL]n Shift Out SO 2E 46 . 4E 78 N 6E 110 n

0F 15 [CTRL]o Shift In SI 2F 47 / 4F 79 O 6F 111 o

10 16 [CTRL]p Device Link Esc DLE 30 48 0 50 80 P 70 112 p

11 17 [CTRL]q Dev Cont 1 X-ON DC1 31 49 1 51 81 Q 71 113 q

12 18 [CTRL]r Device Control 2 DC2 32 50 2 52 82 R 72 114 r

13 19 [CTRL]s Dev Cont 3 X-OFF DC3 33 51 3 53 83 S 73 115 s

14 20 [CTRL]t Device Control 4 DC4 34 52 4 54 84 T 74 116 t

15 21 [CTRL]u Negative Ack NAK 35 53 5 55 85 U 75 117 u

16 22 [CTRL]v Synchronous Idle SYN 36 54 6 56 86 V 76 118 v

17 23 [CTRL]w End Trans Block ETB 37 55 7 57 87 W 77 119 w

18 24 [CTRL]x Cancel CAN 38 56 8 58 88 X 78 120 x

19 25 [CTRL]y End Medium EM 39 57 9 59 89 Y 79 121 y

1A 26 [CTRL]z Substitute SUB 3A 58 : 5A 90 Z 7A 122 z

1B 27 [CTRL][Escape ESC 3B 59 ; 5B 91 [7B 123 {

1C 28 [CTRL]\ Cursor Right FS 3C 60 < 5C 92 \ 7C 124 |

1D 29 [CTRL]] Cursor Left GS 3D 61 = 5D 93] 7D 125 }

1E 30 [CTRL]^ Cursor Up RS 3E 62 > 5E 94 ^ 7E 126 ~

1F 31 [CTRL]_ Cursor Down US 3F 63 ? 5F 95 _ 7F 127 DEL

QUCM Manual B ASCII Table 83

QUCM Manual C QUCM Language Syntax 85

Appendix C

QUCM Language Syntax

STATEMENTS
ON RECEIVE PORT <port number> <message description> GOTO <label>

ON RECEIVE PORT <port number> <message description> RETURN

ON CHANGE <variable> GOTO <label>

ON CHANGE <variable> RETURN

ON CHANGE <variable> & <expr> GOTO <label>

ON CHANGE <variable> & <expr> RETURN

ON TIMEOUT <expr> GOTO <label>

ON TIMEOUT <expr> RETURN

WAIT

GOTO <label>

GOSUB <label>

RETURN

IF <logical> THEN one or more statements followed by a newline

IF <logical> THEN one or more statements ELSE one or more statements, newline

IF <logical> THEN newline
one or more statements
ENDIF

86 QUCM Language Syntax C QUCM Manual

IF <logical> THEN newline
one or more statements
ELSE
one or more statements
ENDIF

WHILE <logical> one or more statements WEND

REPEAT one or more statements UNTIL <logical>

FOR <variable> = <expr> TO <expr>
one or more statements
NEXT

FOR <variable> = <expr> TO <expr> STEP <expr>
one or more statements
NEXT

FOR <variable> = <expr> DOWNTO <expr>
one or more statements
NEXT

FOR <variable> = <expr> DOWNTO <expr> STEP <expr>
one or more statements
NEXT

<variable> = <expr>

<variable>.<const> = <logical>

DELAY <expr>

STOP

TRANSMIT PORT <port number> <message description>

SET <variable>.<const>

READ FILE <file address> <variable>, <variable>, ...
WRITE FILE <file address> <variable>, <variable>, ...

CLEAR <variable>.<const>

TOGGLE <variable>.<const>

SET PORT <port number> BAUD <const>
SET PORT <port number> CAPITALIZE <const>
SET PORT <port number> DATA <const>
SET DEBUG <const>
SET PORT <port number> MODE <const>
SET PORT <port number> PARITY <const>

QUCM Manual C QUCM Language Syntax 87

SET PORT <port number> STOP <const>

DEFINE <macro>=<replacement string> newline

CONSTANTS <const> in descriptions above
decimal numbers 12345
signed numbers -123
hexadecimal constant x12ab
reserved constants:

EVEN
ODD
NONE

boolean constants:

TRUE
FALSE

EXPRESSIONS <NUMERIC expr> above

Operators:
 - unary negation
~ unary bitwise complement
* multiplication
/ division
% modulus
+ addition
- subtraction
<< left shift
>> right shift
& bitwise AND
| bitwise OR
^ bitwise XOR
() parenthesis

Precedence:
First, operands or sub expressions in parenthesis
Then unary negation - or complement ~
Then *, /, % left to right
Then +, - left to right
Then <<, >> left to right
Then & left to right
Then |, ^ left to right

Functions:
CRC(<expr>,<expr>,<expr>) {only used in message descriptions}
SUM(<expr>,<expr>,<expr>)
SUMW(<expr>,<expr>,<expr>)
LRC(<expr>,<expr>,<expr>)
LRCW(<expr>,<expr>,<expr>)
CRC16(<expr>,<expr>,<expr>)
 | | |
 | | +---- initial value usually 0 or -1
 | +----------- ending index
 +------------------ starting index

88 QUCM Language Syntax C QUCM Manual

 MIN(<expr>,<expr>)

 MAX(<expr>,<expr>)

 SWAP(<expr>) {reverses byte order of a word}

LOGICAL EXPRESSIONS <logical> above

Logical Operators:
AND
OR
XOR
NOT (unary)

Logical Functions:
CHANGED(<variable>)
CHANGED(<variable> & <expr>)
<variable>].<const> {constant bit number 1..16}

Relational Operators:
< less than
> greater than
<= less than or equal
>= greater than or equal
= equal
<> not equal

ARITHMETIC VARIABLES
$ the current index in a message description

MESSAGE DESCRIPTIONS

Operator:
: concatenation

Literal string:
Enclosed in quotes.
\xx where xx is two digit hex number can be used for non-printables
\" can be used to embed a quotation mark
\\ can be used to embed a \
\a - Bell, same as "\07", makes printers and terminals beep
\b - Backspace, "\08", nondestructive backspace
\f - Form feed, "\0c", top of form, clears some terminal screens
\n - New line, "\0a"
\r - Return, "\0d"
\t - Tab, "\09", advances to tab stop
\v - Vertical tab, "\0b", used by some printers with VFU

Unlike ’C’, the QUCM compiler accepts the above sequences in upper or lower case. These are in
addition to the original QUCM escape sequence:

\xx - where each x is 0..9, A..F
and last but not least: \? - where ? is any character encodes that character
which is commonly used for: \\ - literal slash or \" - literal quote

QUCM Manual C QUCM Language Syntax 89

The QUCM compiler does not recognize the BASIC style """" to represent "\"".

Functions:
HEX(<expr>,<expr>)
DEC(<expr>,<expr>)
UNS(<expr>,<expr>)
OCT(<expr>,<expr>)
BCD(<expr>,<expr>)
 | |
 | +-width in characters
 +------expression in TRANSMIT

<variable> in ON RECEIVE to evaluate and place result in RXVARIABLE
(<expr>) in ON RECEIVE to generate and match string

RAW(<variable>,<expr>)
 | |
 | +- width in characters
 +-------- starting register number
BYTE(<expr>)
WORD(<expr>)
RWORD(<expr>)
 |

+---- expression in transmit
 <variable> in ON RECEIVE to evaluate and place result in RXVARIABLE
 (<expr>) in ON RECEIVE to generate and match string

TON(<expr>)
TOFF(<expr>)
 |
 +------ translation number 1..8

QUCM RUN TIME ERROR CODES
0 - Halted by clearing RUN bit
1 - Halted by STOP or RETURN statement
2 - Execution of invalid instruction (program corrupted, compiler bug)
3 - Division by zero
4 - No memory for ON CHANGE
5 - No memory for ON RECEIVE
6 - Illegal run time call (module firmware version doesn’t support compiler)
7 - Value out of bounds (register < 1 or > 2048, buffer index out of range,

SET parameter bad, output/input too long (> 256),
width specification < 0 or > 64)

8 - Checksum error in downloaded code

QUCM Reserved Word List
The following lists of words are reserved by the QUCM language. These words may not be used for
define macro names or labels.

90 QUCM Language Syntax C QUCM Manual

AND
APPLICATION NUMBER

FALSE OFFSET TCP

BCD FILE ON THEN

BAUD FLASH OR THREAD

BYTE FLOAT OUTPUT TIMEOUT

CAPITALIZE FOR PARITY TIMER

CASE FULL PORT TO

CHANGE FUNCTION PPP TOGGLE

CHANGED GOSUB PPPUSERNAME TRANSMIT

CLEAR GOTO PPPPASSWORD TRUE

CLOSE HALF PPPHANGUP TRUNC

COMMENT
CONNECT

HEX RAW UCM

CRC IDEC READ UDP

CRC16 IF REALTIME UNS

CRCAB INPUT RECEIVE UNSIGNED

CRCBOB LENGTH REQUIRE
RETURN

UNTIL

CRCDNP LIGHT REVISION
REPEAT

VARIABLE

CTS LISTEN RNIM WAIT

DATA LONG RTS WEND

DEBUG LRC RTU WHILE

DEC LRCW RWORD WORD

DECLARE MAX
MAXFIRMWARE
MAXSERIAL

SET WRITE

DEFINE MIN
MINFIRMWARE
MINSERIAL

SIGNED XOR

DELAY MODE
MODULEMASK

SOCKET UNTIL

DOWNTO MOVE SOCKETSTATE VARIABLE

DUPLEX MULTIDROP STEP WAIT

ELSE NAGLE STOP WEND

ENDIF NEXT STRING WHILE

ENDFUNC NOT SUM WORD

ENDSWITCH NONE SUMW WRITE

ERASE OCT SWAP XOR

EVEN ODD SWITCH

EXPIRED OFF SYMAX

QUCM Manual D Modsoft Traffic Cop Configuration 91

Appendix D

Modsoft Traffic Cop Configuration

QUCM
The register configuration of the QUCM is governed by its entry in the Traffic Cop description and
characteristic file: GCNFTCOP.SYS. This file is typically located in the \MODSOFT\RUNTIME di-
rectory.

NOTE: Pay special notice to the warning about editing this file with editors
that do not support line width greater than 255 characters.
DO NOT use MS-DOS EDIT on this file!

The entry for the QUCM follows the form of a Quantum Dual Port Memory I/O module with 64 bytes
of input and 64 bytes of output. The standard entry used in Modsoft V2.4 is shown below:

QUCM ,214,0,64,64,NR&D Universal Comm,0,L0127,2,0000
1234567890123456789012345678901234567890123456789012345678

The fields are comma separated.

The first 10 characters are the Name of the module.

The 214 is the next entry in the list of available devices. If you are adding this line, choose the next
free number in the list.

The 0 in character position 16 indicates that other modules may be inserted in this drop.

The 64 in character positions 18 and 19 set the number of INPUT bytes. A value of 64 provides 32
WORDS of input (3x registers)

The 64 in character positions 21 and 22 set the number of OUTPUT bytes. A value of 64 provides
32 WORDS of output (4x registers)

The next field is the text description (19 characters max.).

The 0 in position 40 determines that the module is a discrete module and may take 0x, 1x, 3x, 4x
references.

The module ID is L0127.

The 2 that follows signifies that the QUCM is a QUANTUM DPM module.

The last 0000 tells the T_MODULE.LmsSlotData.a to use the default module bits.

92 Modsoft Traffic Cop Configuration D QUCM Manual

It is possible to modify the width of the INPUT bytes and OUTPUT bytes to adjust the QUCM for a
unique application. The Quantum rack only allows 64 words total for the rack so it may be desirable to
reduce the number used by the QUCM to allow for other I/O. For example, the Input and Output bytes
might be set down to 10 bytes each to allow 5 words of input and 5 words of output to the QUCM and
leave room for other I/O in the rack.

NOTE: If the entry in the Traffic Cop configuration file is altered, all QUCMs in the PLC system will
use this entry. Also, special care will be needed during future updates of Modsoft to carry the altered
setting to the new revision.

QUCM Manual E Concept 2.1 (or later) Configuration 93

Appendix E

Concept 2.1 (or later) Configuration

The register configuration of each module is controlled by the ModConnect tool in Concept. The
ModConnect tool adds devices to Concept that were not originally available when Concept was devel-
oped. To accomplish this, the user must copy a .mdc file to the \Concept directory. The .mdc file for
the QUCM is available on the website. Download the cncept21.zip file, and extract either the
Nrd_w95.mdc, or the Nrd_wnt.mdc file to the \Concept directory.

Next open the ModConnect tool from the Start menu. From the file menu, choose Open Installation
File. The appropriate .mdc file should appear in the list of files from which to choose. Click the .mdc
file, then click OK. The Select Module dialogue box will appear, allowing the user to choose one of the
QUCM configurations that are available. Choose the appropriate module, and click Add Module. Con-
cept now has all the information needed to configure a Quantum PLC for the QUCM.

Note: It is not recommended to add more than one QUCM configuration to the Concept Modconnect
tool. Only choose the one that is most appropriate to the needs of the application.

QUCM Manual F NR&D on the Internet 95

Appendix F

NR&D on the Internet

Niobrara offers product information, firmware and software upgrades, user manuals,
and technical support via the Internet at:

http://www.niobrara.com

For technical support questions e-mail: techsupport@niobrara.com

For marketing questions e-mail: marketing@niobrara.com

For direct anonymous ftp connect to ftp.niobrara.com

QUCM Manual G Memory Map 97

Appendix G

Memory Map

The memory of the QUCM is divided into separate areas including PLC Rack Input (3x) 16-bit register,
PLC Rack Output (4x) 16-bit registers, and four files (6x).

PLC INPUTS (3x)
The QUCM has 60 implemented 3x registers. The first 32 are available to the Quantum PLC through
the backplane and are read-only to the PLC. Inputs 1 through 4 default to the status and line number
displays for Applications 1 and 2. The INPUT registers are arranged in Modicon bit order with the bits
1-16 in MSB-LSB.

98 Memory Map G QUCM Manual

Table G-1 INPUT Registers (3x)

PLC OUTPUTS (4x)
The QUCM has 2048 implemented 4x registers. The first 32 are available to the Quantum PLC through
the backplane and are read/write from the PLC. The INPUT and OUTPUT registers are arranged in
Modicon bit order with the bits 1-16 in MSB-LSB.

QUCM Register Description Bit Description

1 App. 1 Status

2 App. 1 Line
Number

This is the default location for these status registers.
The location of the Status and Line number
registers for Application 1 is controlled by
OUTPUT[42]

3 App. 2 Status

4 App. 2 Line
Number

This is the default location for these status registers.
The location of the Status and Line number
registers for Application 2 is controlled by
OUTPUT[43]

5-32 Rack Inputs PLC Read only.

33 Reserved

34 Reserved

35 Reserved

36 Read Switch State bit 16 = Halt 1 (0=off, 1=on)
bit 15 = Prot 1
bit 14 = Halt 2
bit 13 = Prot 2
bit 11 = RS-485/RS-232 1 (0=232, 1=485)
bit 10 = RS-485/RS-232 2 (0=232, 1=485)

37 Read CTS State bit 16 = CTS Port 1 (0=off, 1=on)
bit 15 = CTS Port 2

38 MSW

39

40

Ethernet Port
MAC Address

LSW

41 App 1, Thread 1

42 App 1, Thread 2

43 App 1, Thread 3

44 App 1, Thread 4

45 App 1, Thread 5

46 App 1, Thread 6

47 App 1, Thread 7

48 App 1, Thread 8

Last line number entered by each Application
thread. This is a convenient debugging tool which
allows a view of what each thread is doing (thus,
what it is waiting for)

51 App 2, Thread 1

52 App 2, Thread 2

53 App 2, Thread 3

54 App 2, Thread 4

55 App 2, Thread 5

56 App 2, Thread 6

57 App 2, Thread 7

58 App 2, Thread 8

QUCM Manual G Memory Map 99

Table G-2 OUTPUT Registers (4x)

100 Memory Map G QUCM Manual

QUCM Register Description Bit Description

1-32 Rack Outputs QUCM Read only.

33 Default Run Mask

34 Pointer to Run Mask

35 Auto-Start Mask Copied to Run Mask at boot

36 Read Switch State bit 16 = Halt 1 (0=off, 1=on)
bit 15 = Prot 1
bit 14 = Halt 2
bit 13 = Prot 2
bit 11 = Port 1 in RS-485
bit 10 = Port 2 in RS-485

37 Read CTS State bit 16 = CTS Port 1 (0=off, 1=on)
bit 15 = CTS Port 2

38 High Byte = Port 1 control
Low Byte = Modbus Drop of Port 1

bit 1 = parity (0=even, 1=none)
bits 3-8 = baud rate:
0 = 9600
15 = 19200
16 = 38400

39 High Byte = Port 2 control
Low Byte = Modbus Drop of Port 2

bit 1 = parity (0=even, 1=none)
bits 3-8 = baud rate:
0 = 9600
15 = 19200
16 = 38400

40 Rack Comms Bit 16 = Rack Comms Active

41 Modbus Drop of E-net Port

42 Pointer to Application 1 Status
Register

43 Pointer to Application 2 Status
Register

44 Reserved

45 Reserved

46 IP Address (one byte/reg.)

47 IP Address

48 IP Address

49 IP Address

50 Subnet Mask (one byte/reg)

51 Subnet Mask

52 Subnet Mask

53 Subnet Mask

54 Default Gate (one byte/reg)

55 Default Gate

56 Default Gate

57 Default Gate

58 through 61 Reserved

62 TCP Backstep

63 Modbus/TCP Server Port Number

64 Web Server Port Number

65 Quiet Timeout in seconds

QUCM Manual G Memory Map 101

QUCM Register Description Bit Description

66 through 68 Reserved

69 LED bit map bit 16 = Light 3(0=off, 1=on)
bit 15 = Light 4
bit 14 = Light 5
bit 13 = Light 6
bit 12 = Light 7
bit 11 = Light 8
bit 10 = Light 9
bit 9 = Light 10
bit 8 = Fault LED
bit 7 = Active LED
bit 6 = Ready LED
bit 5 = Run LED
bit 4 = App. 1 Run
bit 3 = App. 2 Run
bit 2 = Light 1
bit 1 = Light 2

70 Real-Time Clock bit 1 = RTC support (1=support of RTC)
bit 2 = RTC chip present (1=chip present)
bit 3 = Status (0=reliable, 1=unreliable)

71 RTC Seconds

72 RTC Minutes

73 RTC Hours

74 RTC Day of Month

75 RTC Month

76 RTC Year

77 RTC Day of Week

78 Register 1 of UNIX time UNIX time represents the number of seconds since the
beginning of 1970.

79 Register 2 of UNIX time

QUCM Manual Index 103

Index

A

AND, 23, 88
APPLICATION, 49

B

BAUD, 36, 86
BCD, 25, 45, 53, 57, 89
BYTE, 25, 45, 58, 89

C

CAPITALIZE, 20, 27, 36, 86
CHANGE, 85. See also ON CHANGE
CHANGED, 49, 88
CLEAR, 28, 86
CRC, 22, 43, 87
CRCAB, 22
CRCBOB, 22, 43
CRCDNP, 22, 44
CRC16, 22, 43, 87
CTS, 50

D

DATA, 36, 37, 86
DEBUG, 20, 36, 86
DEC, 25, 45, 52, 54, 89
DEFINE, 30, 61, 87
DELAY, 30, 86
DOWNTO, 31, 86

E

ELSE, 32, 85
ENDIF, 32, 85
ERROR Codes, 89
EVEN, 20, 38, 87
EXPIRED, 31

F

FALSE, 19, 20, 27, 36, 87
FOR, 27, 31, 86
Functions, 89

G

GOSUB, 22, 32, 85
GOTO, 22, 32, 33, 85

H

HEX, 25, 46, 51, 54, 89
HEXLC, 46

I

IDEC, 25, 46
IF, 27
Installation, 14

L

LIGHT, 36
Literal Strings, 88
LONG, 47
LRC, 22, 44, 87
LRCW, 22, 44, 87

M

MAX, 22, 49, 88
Message Assignments, 26
MIN, 22, 49, 88
MODE, 36, 86

N

NAGLE, 37
NEXT, 31, 86
NONE, 19, 20, 38, 87
NOT, 23, 88

104 Index QUCM Manual

O

OCT, 25, 47, 52, 56, 89
ODD, 19, 20, 38, 87
Operator, 88
OR, 23, 88

P

PARITY, 20, 37, 38, 86
Precedence of operators, 21

R

RAW, 25, 47, 57, 89
READ, 86
READ PROGRAM, 34
RECEIVE, 85. See also ON RECEIVE
REPEAT, 27, 35, 86
Reserved Words, 89
RETURN, 32. See also GOSUB
RTS, 50
Run Time Error Registers, 21
RWORD, 25, 47, 59, 89

S

SET, 35, 86
SET LIGHT, 36
STEP, 31. See also FOR
STOP, 38
SUM, 22, 44, 87
SUMW, 22, 44, 87
SWAP, 22, 49, 88

T

THEN, 32. See also IF
THREAD, 50
TIMEOUT, 85. See also ON TIMEOUT
TO, 31. See also FOR
TOFF, 48, 89
TOGGLE, 39, 86
TOGGLE LIGHT, 39
TON, 48, 89
TRANSMIT, 25, 39, 51, 86
TRUE, 19, 20, 36, 87

U

UNS, 25, 48, 52, 55, 89
UNTIL, 86. See also REPEAT

V

Variable Length Fields, 25

W

WAIT, 33, 34, 39, 85
WEND, 39. See also WHILE
WHILE, 27, 39, 86
WORD, 25, 49, 59, 89
WRITE, 86
WRITE PROGRAM, 40

X

XOR, 21, 88

<

<const>, 19
<expr>, 21
<label>, 22
<logical>, 22
<message description>, 24
<string>, 24

