
UCM Manual

UCM
Installation and Programming Manual

This Manual describes the UCM1 and UCM4 Universal Communication Module, its uses and set up. It also de-
scribes the use of the programming software and compiler.

Effective: 6 October, 1999

Niobrara Research & Development Corporation
P.O. Box 3418 Joplin, MO 64803 USA

Telephone: (800) 235-6723 or (417) 624-8918
Facsimile: (417) 624-8920
Internet: http://niobrara.com

SY/MAX and Square D are registered trademarks of Square D Company.

PowerLogic is a trademark of Square D Company.

Allen-Bradley, A-B, and Data Highway are trademarks of Allen-Bradley Company.

Subject to change without notice.

© Niobrara Research & Development Corporation 1994, 1995, 1996, 1997. All Rights
Reserved.

 3

Contents

1 Introduction ...11

2 Installation ...17

3 Quick Start ..21

HELLO.UCM ...22
DEC.UCM ..25

4 UCM Language Definitions..29

Constant Data Representation - <const> ..29
Decimal Integers ...29
Signed Integers ..30
Hexadecimal Integers ..30
Boolean Constants ...30
Reserved Constants ...30

Variable Data Representation - R[<expr>] and $...30
R[1] Command Register ..31
Run Time Error Registers ...32
Line Number Registers..32
Program Area Registers ..32

Arithmetic Expressions - <expr> ...33
Numeric Operators ..33
Precedence of Operators..33
Numeric Functions ..33

Labels - <label> ..34
Logical Expressions - <logical> ...34

Logical Operators ..34
Relational Operators ..35

Message Descriptions - <message description> ...35
Literal String - <string> ..35
Message Functions ..35

Variable Fields ...36
Transmit usage of Variable length ..37
On Receive usage of Variable length ..37

Message Assignments ..37

4

5 UCM Language Statements..39

Assignments ...39
R[<expr>]=<expr> ..40
R[<expr>].<const>=<logical> ..40
R[<expr>].(<expr>)=<logical> ...40
R[<expr>].R[<expr>]=<logical> ..40
R[<expr>]=<message description> ...40

BAUD ...40
CAPITALIZE ...40
CLEAR ..40
DATA ...40
DEBUG ..40
DEFINE ..41
DELAY ..41
DUPLEX ..41
FOR...NEXT...41
GOSUB...RETURN ...42
GOTO ...42
IF...THEN...ELSE...ENDIF ...42
LIGHT ..42
MOVE ..42
MULTIDROP ...42
ON CHANGE...43
ON RECEIVE ..43
ON TIMEOUT ...43
PARITY..43
PRINT (SY/MAX) ...43
READ (SY/MAX) ..44
READ PROGRAM ..45
REPEAT...UNTIL ..45
RETURN ..45
SET ...46

SET BAUD <const> ...46
SET CAPITALIZE <const> ..46
SET DATA <const> ..46
SET DEBUG <const> ...46
SET DUPLEX <const> ...46
SET LIGHT <const> ...47
SET MODE <const> ...47
SET MULTIDROP <const> ...47
SET PARITY <const> ..48
SET STOP <const> ...48
SET TIMER R[<expr>] <const> ..48

SET (bit) ...48
STOP ..48
STOP (BITS) ..48
TOGGLE ..48
TOGGLE LIGHT ...48
TRANSLATE ...49
TRANSMIT..49
WAIT ..49
WHILE...WEND ..49
WRITE (SY/MAX) ..50
WRITE PROGRAM...51

5

6 UCM Language Functions..53

Checksum Functions ..53
CRC ...53
CRC16 ...53
CRCAB ...53
LRC ...54
LRCW ...54
SUM ..54
SUMW ..54

Message Description Functions ..54
BCD - Binary Coded Decimal conversion ..54
BYTE - Single (lower) byte conversion ..55
DEC - Decimal conversion ...55
HEX - Hexadecimal conversion ..56
HEXLC - Lower Case Hexadecimal conversion ..56
IDEC conversion ...56
OCT - Octal conversion ..57
RAW - Raw register conversion ...57
RWORD ..58
TON - Translate on ...58
TOFF - Translate off ...58
UNS - Unsigned decimal conversion ..58
WORD...59

Other Functions ..59
CHANGED ...59
EXPIRED ..59
FLOAT ..60
MAX..60
MIN ...60
SWAP ..60
PORT...60
RTS..60
TRUNC ...60
CTS..61

7 Configuration Software UCMSW..63

UCMSW ...63
Data Entry Keys ...63
Development Functions ..64

"Read source from disk" ...65
"Write source to disk" ...66
"eDit" ...66
"Compile" ..66
"View errors" ...66
"print Source" ...66
"print Errors" ..67
"downLoad compiled work file" ...67
"eRase file" ..67

Utilities ...68
View module registers ..68
Terminal Emulator ..69
Download Pre-compiled file ...70
Baud Rate Calculator ..70

SETUP ..72

6

SY/MAX SETUP ..72
Personal Computer COM: port ...72
SY/LINK Connection ..74
Terminal Emulator SETUP ...75

Command Line Parameters ..76

8 Examples...77

TRANSMIT message function with register references ..77
TRANSMIT HEX ...77
TRANSMIT DEC ...78
TRANSMIT UNS ...78
TRANSMIT OCT ...79
TRANSMIT BCD ...79

ON RECEIVE message functions with register references ...80
ON RECEIVE HEX ..80
ON RECEIVE DEC ..81
ON RECEIVE UNS ..81
ON RECEIVE OCT ..82
ON RECEIVE BCD ..83
ON RECEIVE RAW ...84
ON RECEIVE BYTE ..85
ON RECEIVE WORD ..85
ON RECEIVE RWORD ...85

READ Examples ..85
Static Route READ ...86
Dynamic Route READ ..86

WRITE Examples ...87
Static Route WRITE..87
Dynamic Route WRITE ..87

PRINT Examples ..88

9 Compiling ...89

COMPILE.EXE ..89
-O option ...89
-D option ...89
-L option ..90

Compiler Errors ..90
Debugging ...90

10 Compiler Error Listing ..91

11 Local Registers...97

12 Connector Pinouts...99

RS-422 ports on UCM4-D (DE9S with slide lock posts)99
RS-232 ports on UCM4-S (DE9P with screw lock posts)99
RS-485 ports on a UCM4-M (DE9S with slide lock posts)100

7

RS-422 port on a UCM1-D (DE9S with slide lock posts)100

13 Recommended Cabling..101

Cabling required to configure an UCM ..101
UCM-D to personal computer cabling ..101
UCM4-S to personal computer cabling ...101
UCM-M to personal computer Cabling ..101

Cabling required to connect a UCM port to an external device102
UCM-D RS-422 to SY/MAX RS-422 port ...102
RS-232 DCE (modem) to UCM4-S RS-232 port ..102
RS-232 DTE (terminal) to UCM4-S RS-232 port ..102
UCM-D RS-422 port to PowerLogic®

 RS-485 ...103
Male RS-232 DTE (personal computer) to UCM4-S RS-232 port103

Appendix A Overview of UCM Demo Programs 105

UCM configuration functional description ...105
DEMO1.UCM description: ...106
DEMO2.UCM description: ...108
DEMO3.UCM Description: ..109
DEMO4.UCM Description: ..110
Reducing the rack address space of the UCM...111

Appendix B DEMO1.UCM ... 113

Appendix C DEMO2.UCM ... 115

Appendix D DEMO3.UCM ... 117

Appendix E DEMO4.UCM ... 121

Appendix F Serial Communication Overview 125

Hardware Overview..125
RS-232 ...125
RS-422 ...130
RS-485 (four wire) ..131
RS-485 (two wire) ...132
20mA Current Loop ..133

Hardware Handshaking ..134
Software Overview ...135

Binary Representation of Data ..135
Start Bit ...135
Data Bits ..135
Parity Bit ...135

8

Stop Bit ..136
Message Determination ..136

Hexadecimal numbers ...136
ASCII characters ...137

Software Handshaking ...137
X-ON ...138
X-OFF ...138

Appendix G UCM Language Syntax ... 141

STATEMENTS ..141
CONSTANTS <const> in descriptions above..143
EXPRESSIONS <NUMERIC expr> above ...143

Operators: ..143
Precedence: ..143
Functions: ..144

LOGICAL EXPRESSIONS <logical> above ..144
Logical Operators: ...144
Logical Functions: ...144
Relational Operators: ...144

ARITHMETIC VARIABLES ..145
MESSAGE DESCRIPTIONS ..145

Operator: ..145
Literal string: ...145
Functions: ..145

UCM RUN TIME ERROR CODES ..146
COMPILE.EXE Command line parameters ..146
UCMLOAD.EXE Command line parameters ..147
UCM Reserved Word List ..147

Appendix H NR&D/Online BBS .. 149

Figures

Figure 1-1 UCM Module Overview ...13

Figure 1-2 UCM1 Front Panel ..14

Figure 1-3 UCM4 Front Panel ..15

Figure 3-1 Quick Start Setup ..21

Figure 3-2 MS-DOS EDIT of HELLO.UCM...22

Figure 3-3 Register Viewer ..23

Figure 3-4 Register Viewer after running the program ..24

Figure 3-5 TERM screen after running the HELLO.UCM program. ...25

Figure 3-6 MS-DOS EDIT of DEC.UCM ..26

Figure 3-7 Terminal output of DEC.UCM ..27

Figure 3-8 Register View of DEC.UCM ..27

Figure 7-1 Startup Screen ...64

Figure 7-2 Development Menu ..65

Figure 7-3 View Registers ..69

Figure 7-4 Terminal Emulator ..70

Figure 7-5 Download pre-compiled file ...71

Figure 7-6 Baud Rate Calculator ..71

9

Figure 7-7 SY/MAX Setup Screen ...73

Figure 7-8 SY/LINK Setup Screen ...74

Figure 7-9 Terminal Emulator Setup Screen ..75

Figure F-1 DTE to Modem connection ..125

Figure F-2 Null Modem connection ...129

Figure F-3 RS-422 Setup ..131

Figure F-4 RS-485 Four Wire Setup ..132

Figure F-5 RS-485 Two wire Multidrop Setup ..133

Figure F-6 20mA Current Loop (Full Duplex) ...134

Tables

Table 4-1 Constant Data Types ..29

Table 4-2 Reserved Registers ...31

Table 4-3 Run Time Errors ...32

Table 4-4 Numeric Operators ...33

Table 4-5 Checksum Functions ..34

Table 4-6 Additional Functions ..34

Table 4-7 Logical Operators ...34

Table 4-8 Relational Operators ..35

Table 4-9 Message Functions ...36

Table 11-1 Module Register List ..97

Table F-1 25 pin RS-232 port ...127

Table F-2 Type A 9 pin RS-232 port ...128

Table F-3 Type B 9 pin RS-232 port ...128

Table F-4 DB25 Null Modem ..129

Table F-5 DE9 Null Modem...130

Table F-6 SY/MAX DE9S RS-422 Pinout ...131

Table F-7 Decimal, Hex, Binary ..137

Table F-8 ASCII Table ...139

UCM Manual 1 Introduction 11

1

Introduction

The Niobrara Universal Communication Module (UCM) is a SY/MAX® compatible
communication coprocessor which most people think of as a very fast D-LOG with
the ability to read and write PLC rack addressed registers. The UCM is used to com-
municate between a peripheral, or a network of peripherals, and the SY/MAX family
of controllers through the register rack. The UCM is programmed using a language
developed by Niobrara especially for communications between serial devices and PLC
registers.

The UCM is available in the following configurations:

• One (1) RS-422 port, the UCM1-D
• Four (4) RS-422 ports, the UCM4-D
• Four (4) RS-485 (2-wire or 4-wire) ports, the UCM4-M
• Four (4) RS-232 ports, the UCM4-S

See Figure 1-2 for the front panel configuration of the UCM1.
See Figure 1-3 for the front panel configuration of the UCM4.

The UCM is field programmed to the exact protocol of the attached device using a
compiled "BASIC"-like programming language. This language offers rack address-
able registers for use as variables, convenient commands for transmitting and receiv-
ing data strings, checksum calculations, and a variety of flow control commands. The
UCM configuration file is written using any text editor and then compiled using the
COMPILE.EXE utility supplied with the module. (COMPILE runs on MS-DOS®

compatible personal computers.) The compiled code is loaded into the UCM using
another utility, UCMLOAD.EXE, which communicates to the module using the
SY/MAX protocol.

The ports on the UCM are able to function in two modes: SY/MAX and UCM mode.
When the UCM is not running the user program on a port, that port is placed in
SY/MAX mode allowing programs to be downloaded and registers to be viewed or
modified. When a port is running the user program, that port will attempt to commu-
nicate with the attached devices according to the user’s UCM program. The user pro-

12 Introduction 1 UCM Manual

gram has the ability to change the mode to SY/MAX for runtime SY/MAX communi-
cation with external SY/MAX compatible devices. The READ, WRITE, and PRINT
commands allow full featured SY/MAX compatibility including dynamic routes.

The SY/MAX capabilities of UCM make the module ideal for remote rack polling of
SY/MAX devices such as PowerLogic Circuit Monitors. With a very simple program,
a network of CMs may be monitored with the data placed in rack addressable PLC
registers. This presentation of the data as registers is perfect for multiple PLC backup
systems.

In order for the PLC to be able to control the running of the program it must allocate at
least 1 register for the rack slot used by the UCM. This first register controls the run-
ning of the user program. It is likely that additional registers (up to a total of 2,048)
will be assigned to the UCM by the PLC for sharing of data and for providing runtime
error codes and program line numbers for debugging of the user program. Figure 1-1
gives a quick visual overview of the modules registers and their accessibility. Note:
the UCM1 operates the same as a UCM4 with only port 1 being operational.

There are four separate program memory segments inside the UCM4. Programs that
are too large to fit in the space of one memory segment may be placed in consecutive
ports upon download. For example if the program for Port 2 is too large to fit in Port
2’s program area after compilation, it may be downloaded into Port 2 and Port 3. Of
course, Port 3 may not have an operational program but may still be used for
SY/MAX communication.

Unused areas of the program memory may be accessed by UCM applications for addi-
tional non-volatile storage with the READ PROGRAM and WRITE PROGRAM in-
structions. This may be quite useful for small data bases and recipe storage.

This manual provides information on the UCM programming language and utilities,
and installation and operation of the module.

UCM Manual 1 Introduction 13

Figure 1-1 UCM Module Overview

Port 1

User Program

Port 2

User Program

Port 3

User Program

Port 4

User Program

 The Lightly shaded
area indicates the
PLC rack addressed
registers R[1]...R[N].

 The Dark shaded area
indicates registers
R[N+1]...R[2048].
These registers are
used for program use
and are not access-
able through the PLC
backplane.

 Each Port has the
ability to run its own
user program.

 All ports share
access to the full
2048 registers.

 R[1] is the module’s
program controlling
register. Bits 1..4 control
the running of the
programs in ports 1...4.

R[2] and R[3] are the
default locations for the
runtime error registers
and line number / status
registers for Port 1.

R[4],R[5] for Port 2.
R[6],R[7] for Port 3.
R[8],R[9] for Port 4.

External SY/MAX Device
communicating with Port 2
using SY/MAX READ and

WRITE statements in
SY/MAX Mode

External Device
communicating with Port 1

using Transmit and
Receive statements in

UCM Mode

 Each Port has two modes of
operation: UCM and SY/MAX.

 UCM mode uses the Transmit
and Receive statements to
communicate with the external
devices

 SY/MAX mode uses READ,
WRITE, and PRINT statements
to communicate with the
external devices.

Registers
R[1]

R[2]

R[3]

R[4]

R[5]

R[6]

R[7]

R[8]

R[9]

R[10]

R[N]

R[N+1]

R[2048]

14 Introduction 1 UCM Manual

Figure 1-2 UCM1 Front Panel

Universal
Communication

Module

Polling

Receive

Status Indicators (LEDs)

Polling (Green) - When on, the UCM1 is
running its user program.

Receive (Red) - When on, the UCM1 is
receiving data from the external device.

Communication port

RS-422 or RS-485 Serial Differential Port
for connecting to programming and
peripheral equipment.

U
C
M
1

UCM Manual 1 Introduction 15

Figure 1-3 UCM4 Front Panel

TX RX

TX RX

TX RX

TX RX

1

2

3

4

Universal
Communication

Module

U

C

M

4

Communication Ports

Male RS-232 - UCM4-S
Female RS-422 - UCM4-D
Female RS-485 - UCM4-M

Ports 1-4
Serial communication ports for connection of
peripheral devices desiring input and output.
All ports feature full RTS/CTS hardware
handshaking, and support all available
modes.

Communication Indicators (LEDs)

TX (Yellow) - Lights when data is transmitted
from port.

RX (Yellow) - Lights when data is received at
port.

Run
4

Run
3

Run
2

Run
1

Program Indicator Lights

User Light - RED user programmed light accessed in
the program by SET LIGHT ON, SET LIGHT OFF,
or TOGGLE LIGHT. A blank area on the label is
provided for a custom description of the RED light.

Run - GREEN Run light is illuminated while the
program is actually running.

UCM Manual 2 Installation 17

2

Installation

1 Ensure that the power supply on the register rack will support the current draw of
all modules in the rack, including the 1.5 amps drawn by the UCM.

2 Mount the UCM in an available slot in the register rack

3 Connect your PLC programmer to the PLC.

4 Apply power to the rack. The top lights on the UCM1 and UCM4 will strobe dur-
ing startup. The yellow RX/TX lights beneath ports 1-4 on the UCM4 and above
the port on the UCM1 illuminate only when data is passing through the port.

5 With the PLC programmer, allocate registers for the UCM module. At least one
register is needed to access the UCM control register, more registers may be
needed for the user programs.

Note: The scan time of the processor is directly related to the number of exter-
nally addressed registers. Allocating more registers than needed can have an ad-
verse impact on the speed of the system. See the manual for the processor for
more information on optimizing scan speed.

6 Install the UCMSW configuration software from the distribution diskette. Insert
the floppy into a drive and run the INSTALL program from that drive. Select UC-
MSW from the list of softwares to install. It is recommended that a directory
UCM be used for the installation on your hard drive. Once INSTALL is finished
copying and expanding the files, start up the UCMSW with the following com-
mands:

C:

CD \UCM

UCMSW
The following screen should appear:

18 Installation 2 UCM Manual

7 Select S for Setup and choose the proper setting for the SY/MAX connection.
The default settings for the ports on the UCM are SY/MAX mode, 9600 baud, 8
data bits, EVEN parity, and 1 stop bit.

8 Connect your personal computer to the UCM using the connections specified in
the SY/MAX Setup Screen. To test this connection, select Utility then Register
View. You should see a screen similar to below:

UCM Manual 2 Installation 19

9 To write UCM programs on your PC that implement the communications proto-
col of your devices, select D for Development and D for eDit. See chapters 4
through 8 for UCM language definitions, syntax, and syntax examples and Appen-
dix A through E for demo programs. Remember to save the file as you exit from
your editor.

10 Use the COMPILE selection (Chapter 9) to compile your UCM source code
(UCM$WORK.UCM) into UCM executable code (Filename.UCC).

11 Select Yes when prompted to download the compiled program into the UCM. Se-
lect the port that the program will run on.

12 Attach one or more devices to the UCM ports. Refer to Chapters 12 and 13 for
port and cable pinout diagrams. An RS-232 or RS-422 breakout box is useful in
verifying the correct connection of input devices.

13 Turn on your programs by setting the correct bits of the command register of the
UCM from the PLC. The UCM is now running your programs.

UCM Manual 3 Quick Start 21

3

Quick Start

This chapter is for getting a quick start on operating the UCM. It takes the user
through three simple UCM programs to "get the feel" of the module. It is assumed
that the UCM software has been loaded onto the personal computer in the C:\UCM
directory. It is also assumed that the DOS EDIT text editor is used in these examples.
Of course the user may use whatever editor he/she wishes.

These examples work best if a personal computer for programming the UCM and a
separate ASCII terminal are available. If an ASCII terminal is not available, a second
personal computer running a terminal emulator (such as the terminal emulator in UC-
MSW) will work just fine.

This example setup is shown in Figure 3-1 for the UCM4-D. For the UCM4-S, use
proper RS-232 cabling. For the UCM1, the personal computer will have to be
switched between the PLC and port 1 of the UCM when loading the program.

Figure 3-1 Quick Start Setup

PLC UCM

1

2

3

4

SC406 or SC902
Be sure to plug in
the wall transformer.

ASCII Terminal or
PC running a terminal emulator

PC for programming UCM
Running UCMSW

UCM4-D

22 Quick Start 3 UCM Manual

HELLO.UCM
To quickly have the UCM do something, perform the following tasks:

1 Change to the UCM directory using the following command:
> CD \UCM

2 Start the UCMSW development software by entering:
> UCMSW

3 Select Development from the main menu.

4 Select Read source from disk.

5 Type HELLO into the File to read and press Enter. What happens here is that the
text file HELLO.UCM has been copied to the file named UCM$WORK.UCM.
This is the file that is edited during the course of working in the UCMSW envi-
ronment. Before the UCMSW environment is left, you should select Develop-
ment, Write to disk to actually save the work under the HELLO.UCM filename.

6 Select Development again.

7 Select D for eDit to edit the UCM file. This will call up the text editor selected in
the SY/MAX setup. It is assumed that the MS-DOS EDITOR is being used. The
screen should look like Figure 3-2.

8 Examine the program. The top portion sets up the parameters for the port. The
TRANSMIT statement will send the word Hello, followed by a carriage return
(0D hex) and a line feed (0A hex). The program will end after the transmit is per-
formed.

Figure 3-2 MS-DOS EDIT of HELLO.UCM

UCM Manual 3 Quick Start 23

9 Exit from EDIT by pressing Alt key and the F key at the same time to show the
FILE menu. Press the X key to exit.

10 Compile the HELLO.UCM program by selecting Development Compile. If no er-
rors occur during the compile, a file called HELLO.UCC will be generated. This
file is the code that is loaded into the UCM.

11 When the compile is successful, a CONFIRM window will open and ask if you
want to download the program into the UCM. Select Y for yes.

12 A DOWNLOAD WORK FILE window will appear. Enter the Module channel
for the program to be loaded. (1 for this example) Press Enter to accept the value
of 2 for the Status Register and press Enter to accept NO for the Auto Start.

13 UCMSW will now attempt to download the compiled code into the UCM. If an
ERROR window appears, a communication setup problem may exist. Check the
cabling and SETUP. Press F10 to clear any errors. Remember, the external
power supply must be used to connect an SC406 or SC902 to one of the ports on a
D or M module.

If the download is successful, the main menu will appear on the screen.

14 Set up the TERM by running UCMSW and selecting the Terminal Emulator from
the Utility menu. Be sure to have the proper setup selected in the Setup, Terminal
emulator screen.

15 From the programming UCMSW Main menu, select Utility, View Registers. This
will show the values in the registers in the module. The screen should appear as
shown in Figure 3-3.

Figure 3-3 Register Viewer

24 Quick Start 3 UCM Manual

16 To start the program that was just loaded into Port 1, it is necessary to set bit 1 in
register 1. With the cursor located on one of the data fields for register 1, Press 1
Return. Several things will happen now:

a. R[1] will change from a PLC output (A000 hex) to a PLC input (E000 hex).
This means that the PLC may now only read this register and may no longer
write data to it. The reason that this register changed status is because it was
written to by the an external source (or the UCM). Once a register has been
changed to E000 it will remain in that state until power is cycled on the UCM.

b. R[3] changes from 0 to 8000 (hex) to indicate that the program on port 1 is
running without errors.

c. "HELLO<0D><0A>" is transmitted from port 1 to the TERM. This string
should appear on the TERM. The TX light on port 1 should flash as this string
is transmitted.

d. The program then waits 1 second at the DELAY 100 statement. This delay is
used so the user may see the transition of R[2] from 0 to 8000 and back to 0.
Without the delay, the program ends too quickly to observe this transition.

e. The program ends at the STOP statement.

f. As the program ends, R[2] changes to 1 to indicate that the program has
stopped without error. R[3] changes to 7 to indicate that the program stopped
on line 7 of the source code. The View register screen should appear as in Fig-
ure 3-4.

Figure 3-4 Register Viewer after running the program

UCM Manual 3 Quick Start 25

17 To restart the program it is necessary to clear the command bit for the program
and then set the bit again. Using the register viewer, enter a 0 in R[1]. Now enter
a 1 in R[1] to start the program again.

18 The TERM should now display something similar to Figure 3-5

Figure 3-5 TERM screen after running the HELLO.UCM program.

DEC.UCM
For something a little more interesting, try the example program DEC.UCM. From
the main menu of UCMSW, select Development. Select Read source from disk and
choose the file DEC. Select eDit to view the file; it should appear as in Figure 3-6.

This program provides a somewhat more typical application of the features of the
UCM programming language. As in HELLO.UCM, the first four lines featuring the
SET statement determine the operating parameters of the port.

Two labels are used in this example. (Start: and Good_Receive:) Labels are alpha-
numeric strings that must start with a alpha character, contain no spaces, and end with
a colon. Labels are used provide a target for program flow control statements like
GOTO and GOSUB.

The flow of the program is as follows:

1 The control bit for the port is set, starting the program.

2 The UCM port is configured as per the SET commands.

3 The string "Enter 3 digits followed by ENTER key.\0D\0A" is sent.

4 The program waits indefinitely until three digits and a carriage return are received.
Note: Data in registers defined in the ON RECEIVE is not valid until the entire
ON RECEIVE is matched.

26 Quick Start 3 UCM Manual

5 Once the ON RECEIVE is matched, flow is sent to the label Good_Receive:.

6 The string "Received this number: ":DEC(R[10],3):"\0d\0a" is sent.

7 Register 11 is set equal to Register 10 plus one.

8 The string "Modified to be this number: "DEC(R[11],3):"\0d\0a"

9 Flow returns to START (Step 3 above).

Figure 3-6 MS-DOS EDIT of DEC.UCM

Compile this program, download it into port 1 of the UCM, and run it by setting bit 1
in R[1]. After a few operations, the TERM should look something like the Figure
3-7.

Notice the values in R[10] and R[11] during operation of this program with the Regis-
ter Viewer. Enter the values 12345 followed by a carriage return. The expected value
in R[10] when the <0D> is received and the ON RECEIVE is matched will be 345. If
close attention is paid the values 123, 234, and 345 will appear in R[10] as the charac-
ters are entered. But the only the 345 value is correct. This fact should be remem-
bered for all applications. See Figure 3-8.

The UCM is a very powerful computer and these examples have just scratched the sur-
face of its capabilities. It is hoped that the user will take these example programs and
"play" with them gain a better understanding of how other functions in the UCM
work.

UCM Manual 3 Quick Start 27

Figure 3-7 Terminal output of DEC.UCM

Figure 3-8 Register View of DEC.UCM

UCM Manual 4 UCM Language Definitions 29

4

UCM Language Definitions

The UCM language is its own unique structured language although the user will prob-
ably notice similarities with BASIC, PASCAL, and C. Labels are used to control pro-
gram flow. Line numbers are not required. The following definitions apply through
this manual:

Constant Data Representation - <const>
If numeric data is to remain the same during the entire operation of the UCM program
then they should be treated as constants. The UCM supports unsigned decimal inte-
gers, signed decimal integers, hexadecimal integers, boolean constants, and a few re-
served constants. The use of a constant is referred to as <const> in this manual.

Table 4-1 Constant Data Types

Decimal Integers

Decimal integers are defined as the unsigned whole numbers within the range from 0
through 65,535. The following are examples of decimal integers:

0
32114
59
65311

Constant Data
Type

Range Prefix Symbol

Decimal 0...65,535 NA

Signed Integer -32768...32767 NA

Hexadecimal
Integer

0...FFFF x

Boolean Constants TRUE, FALSE NA

Reserved Constants EVEN,ODD,NONE NA

30 UCM Language Definitions 4 UCM Manual

Signed Integers

Signed integers are defined as the whole numbers within the range from -32768
through 32767. The following are examples of signed integers.

-514
0
31
-1

Hexadecimal Integers

Hexadecimal integers are defined as the hexadecimal representation of the whole
numbers within the range from 0 through FFFF. Hexadecimal numbers are defined by
the prefix x. The following are examples of hexadecimal constants:

x12AB
xf34c
x15

Boolean Constants

There are two predefined boolean constants: TRUE and FALSE. The following are
valid uses of the boolean constants:

SET CAPITALIZE FALSE
SET DEBUG TRUE

Reserved Constants

The following constants are reserved for the use in the SET PARITY statement:
EVEN, ODD, and NONE. The following are valid uses of the reserved constants:

SET PARITY EVEN
SET PARITY ODD
SET PARITY NONE

Variable Data Representation - R[<expr>] and $
There are two types of variables used in the UCM: the special variable $ and register
variables. The $ variable is a special variable which contains the current index position
in a message description. All other variable data in the UCM language is stored in
registers. There are 2,048 SY/MAX processor equivalent registers available for vari-
able storage. The syntax R[<expr>] refers to these registers and as <expr> implies,
the subscript may be an expression that evaluates to a constant. The valid range for
these registers is R[1] through R[2048]. The following are valid variable registers.

R[345]
R[(12 + 3)/ 5]
R[R[1245]] (The value of R[1245] must fall within the range 1...2,048.)

These registers, or a portion of these registers, may be rack addressed by the PLC.
Only those registers which are included in the rack address are able to be read or writ-
ten by the PLC through the backplane. For instance, the PLC has rack addressed the
slot for the UCM for registers 251 through 300. These registers will correspond to the
internal registers of the UCM 1 through 50. The PLC will not be able to "see" regis-

UCM Manual 4 UCM Language Definitions 31

ters 51 through 2,048 within the UCM module. Each register that is rack addressed by
the PLC increases the scan time of the processor; therefore it is good programming
practice to only rack address the minimum number of registers that the PLC must use
for the particular application. Use the registers above the rack addressed space for
miscellaneous variable storage.

UCM4 users NOTE: The 2,048 registers in the module are shared by all programs
running within the module. A program on port 1 may modify registers used by the
program on port 3 and so on. This is a very powerful feature of the UCM to allow
sharing of data between applications, but care must be taken to prevent unwanted data
manipulations by other ports. Again it should be noted that all PLC rack addressed
registers should be located in registers 1...n and should be kept to a minimum.

These registers, R[1...2048], may also be accessed by external devices such as another
PLC or a personal computer using a register viewer through one of the front panel
ports on the UCM which is in SY/MAX mode.

The status of these registers as PLC inputs and PLC outputs is determined by the
UCM. Upon power-up, all registers are PLC outputs until they are written to by the
UCM user program or by an external device connected through one of the ports. Once
a register has been written by the UCM or external device it is considered to be a PLC
input until the power is removed from the module.

There are 3 reserved registers in the UCM1 and 9 reserved registers in the UCM4
which may not be used by the user program for variable storage. These registers pro-
vide the command bits to start the user programs and provide information on the error
status and the line number on which the program is stopped.

Table 4-2 Reserved Registers

* - These are the default location of these registers. They can be relocated using the
download command..

R[1] Command Register

Register 1 is the command register for the UCM. Bits 1 through 4 determine the op-
eration of ports 1 through 4 on the UCM4. (Only bit one has meaning on the UCM1.)
The command register is always register 1 of the UCM and cannot be moved.

When the bit for the port is 0 that port is in SY/MAX mode. In this mode compiled
UCM programs may be downloaded into the module from the personal computer and

Register Description UCM Port Normal Status Notes

R[1] Command register PLC Output

R[2]* Error Code Port 1 PLC Input

R[3]* Line Number Port 1 PLC Input

R[4]* Error Code Port 2 PLC Input UCM4 ONLY

R[5]* Line Number Port 2 PLC Input UCM4 ONLY

R[6]* Error Code Port 3 PLC Input UCM4 ONLY

R[7]* Line Number Port 3 PLC Input UCM4 ONLY

R[8]* Error Code Port 4 PLC Input UCM4 ONLY

R[9]* Line Number Port 4 PLC Input UCM4 ONLY

32 UCM Language Definitions 4 UCM Manual

the internal registers may be viewed or modified by external SY/MAX compatible de-
vices.

When the bit for the port is set to 1, that port is running the user program.

Run Time Error Registers

The run time error registers indicate the status of the user program The default run
time error registers are: R[2] port1, R[4] port 2, R[6] port 3 and R[8] port 4. These
registers may be moved using the Load utility within UCMSW. The run time error
registers always directly follow the associated line number registers. If a run time er-
ror has occurred, the following values will be placed in the error register for the spe-
cific port.

Table 4-3 Run Time Errors

Line Number Registers

The line number registers indicate the user program line number which was being exe-
cuted at the time that the program was halted. This halt may occur when the com-
mand bit is zeroed or when a run time error has occurred. The default registers for
each port is: R[3] port 1, R[5] port 2, R[7] port 3 and R[9] port 4. These registers may
be moved using the Load utility within UCMSW.

Program Area Registers

Only the registers within the range of R[1] through R[2048] are directly accessible to
the UCM application program. The UCM also contains four large areas of memory
for program storage. UCM registers R[2049] through R[7049] provide access to each
of these four areas. Register 2049 provides a pointer to determine which Port’s pro-
gram area is being accessed by the external device. The actual program is stored in
registers 2050 through 7049. Only one program area may be accessed by an external
device at a time, but the running applications have access to all program areas simulta-
neously.

The UCM applications may access the program areas by the use of the READ PRO-
GRAM and WRITE PROGRAM instructions. These instructions allow access to
large blocks of registers for non-volatile storage. Unlike the normal user register 1-
2048, the program areas are retained during power loss.

Error Value Definition of Error

0 Halted by clearing RUN bit

1 Halted by STOP or RETURN statement

2 Execution of invalid instruction (Program corrupt)

3 Division by zero

4 No memory for ON CHANGE

5 No memory for ON RECEIVE

6 Illegal run time call (module version does not support
compiler)

7 Value out of bounds (register < 1 or > 2048, buffer
index out of range, SET parameter bad, output/input
too long (>256), width specification < 0 or > 64)

8 Checksum error in downloaded code

UCM Manual 4 UCM Language Definitions 33

NOTICE: Great care should be exercised when accessing the program areas since al-
tering a program may cause the program to halt or other programs within the UCM to
halt and not be able to restart without reloading the entire program.

UCM programs are downloaded starting at register 2051. The length of the program
is stored in register 2050 and is expressed in bytes. To determine the area above the
application available for user use simply use the following formula:

Starting Point = R[2050]/2 + 2050

For more information on READ and WRITE PROGRAM see pages 45 and 51.

Arithmetic Expressions - <expr>
Numeric expressions, referred as <expr> in this manual, involve the operation of vari-
ables and constants through a precedence of operators and functions.

Numeric Operators

Table 4-4 Numeric Operators

Precedence of Operators

The order of precedence of numeric operators is as follows:

1 Sub expressions enclosed in parentheses

2 Unary Negation or Unary Complement

3 *, /, &, %, ^ From left to right within the expression.

4 +, -, | From left to right within the expression.

Numeric Functions

The UCM supports a group of seven checksum calculating functions to be used only
within message descriptions:

Numeric
Operator

Description Example

+ Addition R[25] + 5

- Subtraction R[25] - 5

* Multiplication R[25] * 5

/ Division R[25] / 5

% Modulus R[25] % 5

& Bitwise AND R[25] & x100

| Bitwise OR R[25] | x100

^ Bitwise Exclusive OR R[25] ^ x100

- Unary Negation -R[25]

~ Unary Bitwise Complement ~R[25]

() Parentheses (R[25] + 5) * 3

34 UCM Language Definitions 4 UCM Manual

Table 4-5 Checksum Functions

The first <expr> is the starting index. The next <expr> is the ending index. The last
<expr> is the initial value usually 0 or -1.

These additional functions are also provided:

Table 4-6 Additional Functions

Labels - <label>
The UCM supports alphanumeric labels for targets of GOTO and GOSUB functions.
The label consists of a series of characters ended with a colon. Labels must start with
a alphabetic character, numbers are not allowed as the first character in a Label. La-
bels may not be the exact characters in a UCM language reserved word. The label
TIMEOUTLoop: is valid while TIMEOUT: is not valid.

Logical Expressions - <logical>
The UCM supports the following logical operators and relational operators. These are
referred to as <logical> elsewhere in this manual.

Logical Operators

Table 4-7 Logical Operators

Function Description

CRC(<expr>,<expr>,<expr>) Cyclical Redundancy Check (CCITT Standard)

CRC16(<expr>,<expr>,<expr>) Cyclical Redundancy Check

CRCAB(<expr>,<expr>,<expr>) Special CRC16 for A-B applications

LRC(<expr>,<expr>,<expr>) Longitudinal Redundancy Check by byte

LRCW(<expr>,<expr>,<expr>) Longitudinal Redundancy Check by word

SUM(<expr>,<expr>,<expr>) Straight Sum by byte

SUMW(<expr>,<expr>,<expr>) Straight Sum by word

Function Description Example R[45]=x1234, R[46]=xABCD

MIN(<expr>,<expr>) Provides a result of the <expr> which evaluates
to the smaller of the two expressions.

R[44] = MIN(R[45],R[46]) results in R[44] = x1234

MAX(<expr>,<expr>) Provides a result of the <expr> which evaluates
to the larger of the two expression.

R[44] = MAX(R[45]*xA,R[47]) results in R[44] = x65E0

SWAP(<expr>) Reversed the byte order of the register. R[44] = SWAP(R[46]) results in R[44] = xCDAB

Logical
Operator

Definition Example

AND Result TRUE if both TRUE IF <expr> AND <expr> THEN

OR Result TRUE if one or both TRUE IF <expr> OR <expr> THEN

NOT Inverts the expression IF NOT(<expr>) THEN

UCM Manual 4 UCM Language Definitions 35

Relational Operators

Table 4-8 Relational Operators

Message Descriptions - <message description>
The <message description> refers to the actual serial data that is transmitted from the
UCM port or expected data that is to be received by the port. The <message descrip-
tion> may include literal strings, results of various message functions and the concate-
nation of the above.

Literal String - <string>

A literal string is a string enclosed in quotes. "This is a literal string."

Literal strings may include hexadecimal characters by form \xx where xx is the two
digit hex number of the character. This is useful for sending non-printable characters.
"This is another literal string.\0D\0A" will print the message with a carriage return
(0D) and a line feed (0A).

Embedded quotation marks may be included in literal strings by the insertion of \" in
the location of the embedded quote. "This will print a \"quote\" here."

Embedded \ characters may similarly be inserted by using \\.

Message Functions

The UCM can perform a variety of functions on transmitted and received data. When
the UCM is using these functions for transmitting, register data and expressions are
turned into strings according to the function’s rules. When the UCM is using these
functions for receiving, incoming strings are either matched to the strings that the
UCM expected to receive or they are translated into data and stored in registers.

The following is a list of message functions, each function is described in more detail
on pages 56 through 58.

Relational
Operator

Definition Example

< LESS THAN IF <expr> < <expr> THEN

> GREATER THAN IF <expr> > <expr> THEN

<= LESS THAN or EQUAL IF <expr> <= <expr> THEN

>= GREATER THAN or EQUAL IF <expr> >= <expr> THEN

= EQUAL IF <expr> = <expr> THEN

<> NOT EQUAL IF <expr> <> <expr> THEN

36 UCM Language Definitions 4 UCM Manual

Table 4-9 Message Functions

The message functions that take the form FUNC(<expr>,<expr>) use the following
rules: When using these functions with TRANSMIT, the first <expr> is the data to be
translated and transmitted. When using these functions with ON RECEIVE, replace
the first <expr> with R[<expr>] to have the incoming string translated and placed into
the register R[] or use (<expr>) to have the expression evaluated and matched to the
incoming string. The second <expr> in the these functions is the number of characters
either to transmit or to receive. An error will be generated at compile or run time if
this expression evaluates to less than zero.

RAW takes the form RAW(R[<expr>],<expr>). In this case the first <expr> is the
starting register number and the second <expr> is the number of characters. Always
uses the high byte first and then the low byte..

The message functions that take the form FUNC(<expr>) have fixed character lengths.
BYTE transmits one character, the least significant byte, while WORD and RWORD
each transmit two characters. WORD transmits the most significant byte and then the
least significant byte while RWORD reverses the order, least significant then most
significant. As in the previous message functions, when transmitting use <expr> and
when receiving either use R[<expr>] to receive and place in a register or (<expr>) to
evaluate and match. For examples of the message functions see Chapter 8 - Examples.

In all of the message functions, only characters from the valid character set for that
command can be used.

Variable Fields
The width field of any transmit or receive element (that has a width) may be replaced
with either of two constructions. (Transmit RAW is an exception as shown below.)
The first is just the word VARIABLE, i.e. TRANSMIT DEC(R[10],VARIABLE).
The second is VARIABLE followed by a register reference, i.e. TRANSMIT
HEX(R[11],VARIABLE R[10]) which will write the actual width to the specified reg-
ister

Functions Description

BCD(<expr>) Binary Coded Decimal conversion

BYTE(<expr>) Least Significant (low) byte conversion

DEC(<expr>,<expr>) Decimal conversion (base 10) -32768 to 32767

HEX(<expr>,<expr>) Hexadecimal conversion (base 16)

IDEC(<expr>,<expr>) IDEC format hexadecimal conversion

OCT(<expr>,<expr>) Octal conversion (base 8)

RAW(R[<expr>],<expr>) Sends/Receives high byte then low byte of a register(s)

RWORD(<expr>) Sends/Receives low byte of an expression

TON(<expr>) Turn on translation of one string to another

TOFF(<expr>) Turn off translation of one string to another.

UNS(<expr>,<expr>) Unsigned decimal conversion (base 10) 0 to 65,535

WORD(<expr>) Sends/Receives high byte then low byte of an expression

UCM Manual 4 UCM Language Definitions 37

Transmit usage of Variable length

A variable field in a TRANSMIT statement means one encoded with only the neces-
sary number of digits (no leading zeros).

For example, if R[11] = 1234 then
TRANSMIT "$":DEC(r[11], variable R[10]):"#"

would send out the string $1234# and R[10] would have the value 4. If R[11] = 89
then the string $89# would be transmitted and R[10] would equal 2.

This type of transmit structure applies to the BCD, UNS, DEC, HEX, OCT, and IDEC
formats. The TRANSMIT RAW variable structure requires a terminator byte of 00
hex at the end of the raw string. The transmit raw variable sends up to but not includ-
ing the null terminator. The optional count register does not include the terminator in
the count.

For example, if R[11]=x486F, R[12]=x7764, and R[13]=x7900 then
TRANSMIT "$":RAW(R[11], VARIABLE R[10]):"#"

would send the string $Howdy# and R[10] would equal 5. If R[12]=x0000 then the
string $Ho# would be transmitted and R[10] would equal 2.

On Receive usage of Variable length

A variable field in an ON RECEIVE statement must be followed by a literal field such
as "\0d". The first character of the literal field works as a terminator.

For example, A device sends a variable length number with a fixed number of decimal
points such as $125.01 or $3.99; the decimal point may be used as a terminator and it
could be handled as follows:

ON RECEIVE "$":dec(r[100],variable):".":dec(r[101],2)
In the case of $125.01, register R[100] = 125 and R[101] = 1. For $3.99, register
R[100] = 3 and R[101] = 99.

The ON Receive raw variable writes an extra zero byte to the registers following the
received data. In the case of an odd number of characters, the last register contains the
final character in the MSB and a zero in the LSB. In the case of an even number of
characters, all 16 bits of the register following the last two characters are set to zero.
This null terminator is not included in the count optionally reported.

For example: A device transmits a variable length error message terminated with a
carriage return and line feed.

ON RECEIVE RAW(R[500], variable R[200]):"\0d\0a"

will accept the message and place it in packed ASCII form starting at register 500.
Register 200 would hold the number of characters (bytes) accepted in the string not
including the carriage return or line feed.

Message Assignments
It is sometimes convenient to apply the message descriptions of a TRANSMIT mes-
sage and store the message in registers in the UCM rather than transmit the string.
This is possibly by simply using the assignment character = to a starting register.

R[<exp>] = <message>

38 UCM Language Definitions 4 UCM Manual

The message will be placed in packed ASCII form starting in register R[<exp>]. Any
valid transmit message may be stored in this manner.

For example:
R[400] = "Hello!\0d\0a"

would result in registers 400 though 403 having the following values:
R[400]=x4865, R[401]=x6C6C, R[402]=x6F21, and R[403]=x0D0A.

Something more obviously useful might be:

R[501] = byte(r[35]):"\03":word(r[36]):word(r[37]):rword(crc16(1,$-1,0))

which would place the reversed word of the checksum in register in R[504].

UCM Manual 5 UCM Language Statements 39

5

UCM Language Statements

The UCM language statements are described in this chapter. Statements control the
operation of the UCM by determining the flow of the program.

The format of these statements includes the definitions from Chapter 4 - UCM
Language Definitions. Whenever one of these definitions is referenced in a statement
it is enclosed in brackets <>. For example, whenever a statement requires an expres-
sion it will appear as <expr>. The words statement and command are used inter-
changeably.

The word newline means a carriage return, line feed or both, whatever your text editor
requires. Most commands do not require newlines but those that do use the word
newline. Since most commands do not requires newlines, multiple statements can be
placed on a single line. A whole program could be written on a single line if no state-
ments that require a newline are used. For readability, newlines between statements
can be used without penalty.

Also note that, except in strings, capitalization in the UCM program is ignored by the
UCM and its compiler. The label Tom: is the same as the label TOM:. In literal
strings, which are enclosed in quotes "", the capitalization is maintained by the UCM.
The command SET CAPITALIZE can affect the way the UCM handles ASCII charac-
ters on transmitting and receiving.

Program flow is sequential, from the first statement to the second statement to the
third statement etcetera, unless a program flow control statement is reached. Program
flow statements can be jumps (GOTO or GOSUB), loops or conditionals (IF...THEN
...ELSE...ENDIF). After a jump, program flow is still sequential starting with the
statement immediately after the label. Loops can be accomplished with FOR...NEXT,
REPEAT ...UNTIL, or WHILE...WEND.

Assignments
The UCM language allows for the assignment of values to registers and bits of regis-
ters. These assignments are similar to the BASIC LET statement.

40 UCM Language Statements 5 UCM Manual

R[<expr>]=<expr>

This statement sets the register number specified by the first <expr> to the value
obtained by the second <expr>. The valid range of register numbers in the first
<expr> is 1 through 2,048. The valid range of the second <expr> is x0000 through
xFFFF.

R[<expr>].<const>=<logical>

This statement sets a single bit of a register to be one (TRUE) or zero (FALSE).
The <expr> can have the values 1 through 2,048. The <const> can have the values
1 through 16 and the <logical> can have the values TRUE or FALSE.

R[<expr>].(<expr>)=<logical>

This statement sets the bit of a register to be the evaluation of the <logical> seg-
ment.

R[<expr>].R[<expr>]=<logical>

This statement sets the bit of a register to be the evaluation of the <logical> seg-
ment

R[<expr>]=<message description>

This statement sets the register number specified by the <expr> and the following
registers to the packed ASCII values obtained by evaluation of the <message de-
scription>. The valid range of register numbers in the first <expr> is 1 through
2,048. The <message description> may be any valid message used in a TRANS-
MIT command.

BAUD
See SET BAUD on page 46.

CAPITALIZE
See SET CAPITALIZE on page 46.

CLEAR
CLEAR[<expr>].<const> or CLEAR[<expr>].(<expr>)

The CLEAR statement sets a single bit of a register to zero. The register number
<expr> is in the range 1 through 2,048. The bit number <const> is in the range 1
through 16. The (<expr>) must evaluate to a number within the range 1 through
16 and must be enclosed in parenthesis. To force a single bit of a register to be set
to one use the SET R[] statement.

DATA
See SET DATA on page 46.

DEBUG
See SET DEBUG on page 46.

UCM Manual 5 UCM Language Statements 41

DEFINE
DEFINE <macro>=<replacement string> newline

The DEFINE statement is a compiler instruction for a global find and replace.
When the UCM program is compiled the compiler finds every string <macro> and
replaces it with the the string <replacement string>. Both <macro> and <replace-
ment string> are type <string>. A newline is required to define the end of the re-
placement string. Use of this statement can help the readability of the user pro-
gram and also make the program easier to write.

DELAY
DELAY <expr>

The DELAY statement forces the UCM to pause in its execution of other instruc-
tions until a period of time equal to <expr> times 10 mS has expired. Valid range
is 0 to FFFF hex.

DUPLEX
See SET DUPLEX on page 46.

FOR...NEXT
The FOR ... NEXT statement provides the ability to execute a set of instructions a spe-
cific number of times. The variable R[<expr>] is incremented from the value of the
first <expr> to the value of the second <expr>. Once the variable is greater than the
second <expr>, control passes to the next program statement following the NEXT. If
the optional STEP expression is included, the variable R[<expr>] is incremented by
the value equal to the STEP <expr>. If the STEP <expr> is not present a step of 1 is
assumed.

FOR R[<expr>]=<expr> TO <expr>
one or more statements
NEXT

FOR R[<expr>]=<expr> TO <expr> STEP <expr>
one or more statements
NEXT

FOR ... NEXT loops may be constructed to decrement from the first <expr> to the
second <expr> using the DOWNTO function. The STEP <expr> must be a negative
number. If STEP <expr> is not present a step of -1 is assumed.

FOR R[<expr>]=<expr> DOWNTO <expr>
one or more statements
NEXT

FOR R[<expr>]=<expr> DOWNTO <expr> STEP <expr>
one or more statements
NEXT

FOR...NEXT loops may be nested any number of levels.

42 UCM Language Statements 5 UCM Manual

GOSUB...RETURN
GOSUB <label>

The GOSUB statement turns control of a program to another area of code while
expecting to get control back from a RETURN statement. It is useful for program
flow control where one section of code may be used several times. Somewhere in
the program flow following <label> needs to be a RETURN statement. The RE-
TURN statement returns program control back to the GOSUB statement that
caused the jump. After a RETURN the UCM will continue running using the
statement immediately following the GOSUB.

GOTO
GOTO <label>

The GOTO statement turns program control over to another area of code.

IF...THEN...ELSE...ENDIF
The IF ... THEN statement is used to control the program flow based upon the logical
evaluation of the expression in <logical>. When <logical> is true, the statements fol-
lowing the THEN are executed. If <logical> is false the statements following the
ELSE are executed.

IF <logical> THEN one or more statements followed by newline

IF <logical> THEN one or more statements ELSE one or more statements fol-
lowed by a newline

When more statements are required for an IF ... THEN, the statements may be placed
on additional lines below the IF ... THEN. The ENDIF statement indicates the termi-
nation of the IF statement.

IF <logical> THEN newline
one or more statements
ENDIF

IF <logical> THEN newline
one or more statements
ELSE
one or more statements
ENDIF

LIGHT
See SET LIGHT on page 47.

MOVE
Reserved instruction for a special NR&D motion control application. Must not be
used in user application.

MULTIDROP
See SET MULTIDROP on page 47.

UCM Manual 5 UCM Language Statements 43

ON CHANGE
ON CHANGE R[<expr>] GOTO <label>

ON CHANGE R[<expr>] RETURN

ON CHANGE R[<expr>] & <expr> GOTO <label>

ON CHANGE R[<expr>] & <expr> RETURN

The ON CHANGE statement functions within a WAIT loop (like an ON RE-
CEIVE or ON TIMEOUT), and performs the GOTO or RETURN depending upon
the result of the value of R[<expr>]. When the value in R[<expr>] is modified by
another source, the ON CHANGE statement is performed.

ON RECEIVE
ON RECEIVE <message description> GOTO <label>

ON RECEIVE <message description> RETURN

The ON RECEIVE statement functions within a WAIT loop and performs the
GOTO or RETURN depending upon whether the incoming string exactly matches
the <message description>.

ON TIMEOUT
ON TIMEOUT <expr> GOTO <label>

ON TIMEOUT <expr> RETURN

The ON TIMEOUT statement functions within a WAIT loop (like an ON RE-
CEIVE or ON CHANGE), and performs the GOTO or RETURN depending upon
the elapsed time between incoming characters on the port. The result of the
<expr> must fall within the range 0 to FFFF hex. Like the DELAY function, the
ON TIMEOUT <expr> waits for a period of time equal to <expr> times 10mS..

PARITY
 See SET PARITY on page 48.

PRINT (SY/MAX)
PRINT <port> (<drop>,...) <message description> (static route)

PRINT <port> R[<expr>] <message description> (dynamic route)

The PRINT statement allows a UCM program to generate SY/MAX network print
messages from any port on the UCM.

The <port> is an expression which evaluates to a valid UCM port i.e. 1, 2, 3, or 4
for a UCM4 or only 1 for a UCM1. The port number does not have to be the same
port that the program is running on. The port which is selected will change to
SY/MAX mode, if not already in that mode, and emit the PRINT packet. The port
will wait up to 5 seconds for a valid reply from the SY/MAX device before timing
out. The reply status will appear in the line number register for the program run-
ning port.

There are two types of routing schemes used: static and dynamic.

44 UCM Language Statements 5 UCM Manual

The static route includes the required network drops separated by commas and
enclosed in parenthesis. Example: (103, 055). The route will consist of the drop
number of the network port that the UCM is connected, any Net-to-Net ports, and
finally the network target port. The target port must be a NIM port in Peripheral
mode, or an SPE4 port in Peripheral, Transparent, Share, or Gateway mode.

The dynamic route includes a register which contains a pointer to another register
which contains the number of drops in the route, N. The next N registers follow-
ing the number of drops register contain the drop numbers for the route. Example:
PRINT 1 R[1045] "Hello\0D\0A". If R[1045] contains the decimal value 2040,
then the PRINT message will look at R[2040] for the number of drops in the route.
If R[2040] = 3 then the value of R[2041] will be the first drop number, R[2042]
will be the second drop number, and R[2043] will be the target drop.

The <message description> is the same used in a TRANSMIT statement.

READ (SY/MAX)
READ <port> (route) <local>, <remote>, <count>

READ <port> R[<expr>] <local>, <remote>, <count>

The READ statement allows a UCM program to generate SY/MAX network prior-
ity read messages from any port on the UCM.

The <port> is an expression which evaluates to a valid UCM port i.e. 1, 2, 3, or 4
for a UCM4 or only 1 for a UCM1. The port number does not have to be the same
port that the program is running on. The port which is selected will change to
SY/MAX mode, if not already in that mode, and emit the READ packet. The port
will wait up to 5 seconds for a valid reply from the SY/MAX device before timing
out. The reply status will appear in the line number register for the program run-
ning port.

There are two types of routing schemes used: static and dynamic.

The static route includes the required network drops separated by commas and
enclosed in parenthesis. Example: (103, 055). The route will consist of the drop
number of the network port that the UCM is connected, any Net-to-Net ports, and
finally the network target port.

The dynamic route includes a register which contains a pointer to another register
which contains the number of drops in the route, N. The next N registers follow-
ing the number of drops register contain the drop numbers for the route. Example:
READ 1 R[1045] 5, 6, 8. If R[1045] contains the decimal value 2040, then the
READ message will look at R[2040] for the number of drops in the route. If
R[2040] = 3 then the value of R[2041] will be the first drop number, R[2042] will
be the second drop number, and R[2043] will be the target drop.

The <local> is an expression which evaluates to a register number within the range
of 1...2048. This value is the register within the UCM where the data from the
READ will be placed. If <count> value is greater that 1 then the <local> is the
starting register in the UCM for the READ data.

The <remote> is an expression which evaluates to a register number within the
remote SY/MAX device. This value must be within the valid register range of the

UCM Manual 5 UCM Language Statements 45

external device, usually within the range of 1...8191. Consult the manual for the
external device to determine valid register numbers. If the <count> is greater than
1 then the <remote> value is the starting register of the multiple register read.

The <count> is an expression which evaluates to the number of consecutive regis-
ters to be read with the READ statement. The default value is 1. The maximum
value is typically 128 but may vary with the external device.

EXAMPLE: READ 2 (101, 112) 145, 3084, 25

This READ statement will send a SY/MAX network read out UCM port 2 with a
static route into network port 101 and out network port 112. The READ will
transfer the data from registers 3084 through 3109 in the external device to regis-
ters 145 through 170 of the UCM.

READ PROGRAM
READ PROGRAM <port> <local>, <remote>, <count>

The READ PROGRAM statement allows a UCM program to read a group of reg-
isters from the program area of one of the UCM’s ports to the user register area.

The <port> is an expression which evaluates to a valid UCM port i.e. 1, 2, 3, or 4
for a UCM4 or UCM1.

The <local> is an expression which evaluates a number within the range 1 through
2048.

The <remote> is an expression which evaluates to a number within the range 2050
through 7049.

The <count> is an expression which evaluates to a number within the range 1
through 128.

EXAMPLE: READ PROGRAM 3 50,3478,33

would copy 33 registers from Port 3’s program area, register 3748 to the user area
R[50].

REPEAT...UNTIL
REPEAT
program statements
UNTIL <logical>

The REPEAT statement starts a loop based upon the evaluation of the <logical>
condition located in the UNTIL statement. The loop will only be performed as
long as the <logical> is TRUE. When the <logical> is FALSE, program execution
jumps to the statement following the UNTIL.

Note: The program statements will execute at least once regardless of the condi-
tion of <logical>. This is different than the WHILE...WEND or FOR...NEXT
loops which will not execute the program statements within their boundaries if the
<logical> is FALSE.

RETURN
See GOSUB...RETURN on page 42.

46 UCM Language Statements 5 UCM Manual

SET
The SET statement allows the initialization of the UCM for the following parameters:
Baud rate, Capitalization of incoming characters, Data bits, Parity, Stop bits, and De-
bug mode.

SET BAUD <const>

The SET BAUD statement sets the baud rate of the port for the value. Any deci-
mal value may be chosen for the baud rate. The UCMSW utility may be used to
determine the actual baud rate produced by the SET BAUD statement. Example:
SET BAUD 9600

SET CAPITALIZE <const>

The SET CAPITALIZE statement performs a translation on incoming ASCII al-
phabet characters from the lower case to the upper case. Example: SET CAPI-
TALIZE TRUE or SET CAPITALIZE FALSE.

SET DATA <const>

The SET DATA statement sets the number of data bits for the operation of the
port. Valid range is 5,6,7, or 8 bits. Example: SET DATA 8

SET DEBUG <const>

The SET DEBUG statement determines the operation of the UCM port in the
event of a run time error. If SET DEBUG TRUE is used, the UCM program will
halt upon a run time error and display the error number and line number in the ap-
propriate registers. If SET DEBUG FALSE is used, the UCM program will halt
upon a run time error and immediately restart the program from the beginning.

SET DUPLEX <const>

SET DUPLEX controls the behavior of the receiver in a -M module and has two
modes, HALF and FULL:

SET DUPLEX FULL is the normal mode just like a -D or -S module. In full du-
plex, the receiver is listening all of the time and data can be received even during a
transmit (it is buffered until an ON RECEIVE is executed.) If you would tie the
transmit and receive pairs together in this mode, the receiver would receive all
transmitted data.

SET DUPLEX HALF is intended for use with half duplex links such as two wire
RS-485 or echoing modems, radios, or other DCE. In half duplex mode, the re-
ceiver is disabled when there is data to transmit. That is, the receiver is turned off
and RTS is turned on at the start of a TRANSMIT statement and stays disabled
until the last stop bit of the last character transmitted is emitted. At the end of the
transmission, RTS is negated and the receiver is re-enabled. Any receive data
buffered before the transmission is still in the buffer.

RTS behavior and CTS behavior are unaffected by SET DUPLEX. SET DUPLEX
HALF is only effective when a port is in UCM mode. In SY/MAX mode (either
because the program is stopped or because of executing a READ, WRITE, PRINT,
or SET MODE SYMAX) the duplex operation is full. If a TRANSMIT, RE-
CEIVE, or SET MODE UCM is subsequently executed on the SY/MAX mode

UCM Manual 5 UCM Language Statements 47

port, the duplex mode in effect before the change to SY/MAX mode is restored.
At the beginning of a program, the duplex mode is full. Executing a SET DU-
PLEX HALF on a -D module results in a run time error 7 (value out of bounds).
SET DUPLEX FULL can be executed by a -D and there is no effect.

SET LIGHT <const>

The SET LIGHT statement is used to determine the state of the RED indicator
light for the port. SET LIGHT ON turns on the light while SET LIGHT OFF turns
off the light. See also TOGGLE LIGHT on page 48.

SET MODE <const>

The SET MODE statement determines the operating mode of the port. Valid en-
tries are UCM or SYMAX. UCM mode allows the use of the TRANSMIT and
RECEIVE statements to communicate with the external device. SYMAX mode
allows the use of READ, WRITE, and PRINT statements to communicate with ex-
ternal SY/MAX devices. The default mode is UCM if no mode is selected.

SET MULTIDROP <const>

SET MULTIDROP controls the transmit driver disable in the -M module. (The -D
module transmit driver is always enabled.) It has two settings, TRUE and FALSE.

SET MULTIDROP FALSE causes the transmit driver to be enabled continuously
(just like a -D). The CTS pair controls the transmitter restraint only.

SET MULTIDROP TRUE causes the transmit driver enable to be controlled by
CTS. When CTS is active, the driver is enabled (and the transmitter is unre-
strained). When CTS is inactive, the transmit driver is disabled and the TX+ and
TX- leads are placed in a high-impedance state suitable for paralleling with other
transmitters.

Like multidrop false mode, CTS inactive also restrains the transmitter and will
freeze a TRANSMIT statement. Unlike SET DUPLEX, the state of SET
MULTIDROP is effective in SY/MAX mode as well as UCM mode. This is in-
tended to alleviate multidrop contention from modules that halt and enter
SY/MAX mode in some cases. Note that RTS is still asserted in SY/MAX mode
and if tied to the CTS pair, will enable the transmitter. When a channel on a -M
module is stopped or at the beginning of a program SET MULTIDROP TRUE is
in effect. Therefore it is necessary to include an explicit SET MULTIDROP
FALSE at the beginning of any program for a -M module that does not need the
transmit driver disabled. RTS should be looped to CTS fro normal SY/MAX op-
erations on a -M module (i.e. use an SC406, SC902, DC1, or CC100 as usual). It
should be noticed that most applications will have RTS tied to CTS which will de-
feat the above settings (in SY/MAX mode the driver will be enabled).

Executing SET MULTIDROP TRUE on a -D module will result in a run time er-
ror 7 (value out of bounds). Note that the default behavior of the -M , which is
SET MULTIDROP TRUE, is different than the -D which has no multidrop capa-
bility. This is the only difference in the default behavior between the two mod-
ules.

48 UCM Language Statements 5 UCM Manual

SET PARITY <const>

The SET PARITY statement determines the parity of the port. Valid entries are
EVEN, ODD, or NONE. Example: SET PARITY EVEN

SET STOP <const>

The SET STOP statement determines the number of stop bits for the port. Valid
entries are 1 or 2. Example: SET STOP 2

SET TIMER R[<expr>] <const>

The SET TIMER statement sets a timeout value into an internal UCM register,
which may be tested at a later time to check whether the <const> amount of time
has elapsed. The <const> amount of time is in 1/100ths of a second, thus
SET TIMER R[100] 100
would load a value into R[100] which would make that timer expire 1.00 seconds
after the SET TIMER instruction was executed. The timer register may be tested
any time after the SET TIMER command, using the EXPIRED(R[<expr]) func-
tion, which returns FALSE if the timer has not expired (the <const> amount of
time has not elapsed), or TRUE if the timer has expired (the <const> amount of
time, or more, has elapsed).

SET (bit)
SET R[<expr>].<const> or SET R[<expr>].(<expr>)

The SET statement sets a single bit of a register to ONE. The register number
<expr> is in the range 1 through 2,048. The bit number <const> is in the range 1
through 16. The (<expr>) must evaluate to a number within the range 1 through
16 and must be enclosed in parenthesis. To clear a single bit of a register to be set
to one use the CLEAR R[] statement.

STOP
The STOP statement causes the UCM program to halt upon its execution. The pro-
gram may be restarted by clearing and then setting the command bit for the program.

STOP (BITS)
See SET STOP on page 48.

TOGGLE
TOGGLE R[<expr>].<const> or TOGGLE R[<expr>].(<expr>)

The TOGGLE statement changes the state of a single bit of a register. The register
number <expr> is in the range 1 through 2,048. The bit number <const> is in the
range 1 through 16. The (<expr>) must evaluate to a number within the range 1
through 16 and must be enclosed in parenthesis. To force a single bit of a register
to be set to zero use the CLEAR R[] statement. To force a single bit of a register
to be set, use the SET R[] statement.

TOGGLE LIGHT
TOGGLE LIGHT

UCM Manual 5 UCM Language Statements 49

The TOGGLE LIGHT statement changes the state of the RED user light for the
port that the program is running on. If the light was off when the toggle light
statement is executed then the light will be turned off. If the light was on then the
light will be turned off. See also the SET LIGHT command on page 47.

TRANSLATE
TRANSLATE <const>:<string1>=<string2>

Translate assigns the function of translating the message of string2 to string1 to a
constant number between 1 and 8. The Translate statement is used in conjunction
with TON(<const>) and TOFF(<const>). Example: TRANSLATE 1: "\10\10" =
"\10"

The string being received is modified whenever <string1> is encountered so that
<string2> replaces string 1. Suppose TRANSLATE 2: "LL" = "L" is defined. The
UCM port receives the string "HELLO". If the translation is activated for the en-
tire string, ON RECEIVE TON(2):RAW(R[10],4):TOFF(3) RETURN,the string
processed by the ON RECEIVE would be "HELO".

The translation works in the opposite direction for TRANSMIT. If the above trans-
lation is used, TRANSMIT TON(2):"YELOW":TOFF(2) would result in the
sending of the string "YELLOW".

The translation has the following effects upon the checksum calculations:
TRANSMIT, the checksum is calculated based upon the pre-translation message;
ON RECEIVE, the checksum is calculated based upon the post-translation mes-
sage.

TRANSMIT
TRANSMIT <message description>

The TRANSMIT statement allows serial communication to be emitted from the
port. The exact string evaluated from the <message description> will be emitted.

WAIT
The WAIT statement follows a group of ON RECEIVE, ON CHANGE, and ON
TIMEOUT statements. The WAIT statement causes a loop to occur until one of the
ON RECEIVE, ON CHANGE, or ON TIMEOUT conditions has occurred. Program
flow will be directed by the ON RECEIVE, CHANGE, or TIMEOUT statement.

WHILE...WEND
WHILE <logical>
program statements
WEND

The WHILE statement starts a loop based upon the evaluation of the <logical>
condition. The loop will only be performed as long as the <logical> is TRUE.
When the <logical> is FALSE, program execution jumps to the statement follow-
ing the WEND.

50 UCM Language Statements 5 UCM Manual

WRITE (SY/MAX)
WRITE <port> (route) <local>, <remote>, <count>

WRITE <port> R[<expr>] <local>, <remote>, <count>

The WRITE statement allows a UCM program to generate SY/MAX network pri-
ority WRITE messages from any port on the UCM.

The <port> is an expression which evaluates to a valid UCM port i.e. 1, 2, 3, or 4
for a UCM4 or only 1 for a UCM1. The port number does not have to be the same
port that the program is running on. The port which is selected will change to
SY/MAX mode, if not already in that mode, and emit the WRITE packet. The
port will wait up to 5 seconds for a valid reply from the SY/MAX device before
timing out. The reply status will appear in the line number register for the pro-
gram running port.

There are two types of routing schemes used: static and dynamic.

The static route includes the required network drops separated by commas and
enclosed in parenthesis. Example: (103, 055). The route will consist of the drop
number of the network port that the UCM is connected, any Net-to-Net ports, and
finally the network target port.

The dynamic route includes a register which contains a pointer to another register
which contains the number of drops in the route, N. The next N registers follow-
ing the number of drops register contain the drop numbers for the route. Example:
WRITE 1 R[1045] 5, 6, 8. If R[1045] contains the decimal value 2040, then the
WRITE message will look at R[2040] for the number of drops in the route. If
R[2040] = 3 then the value of R[2041] will be the first drop number, R[2042] will
be the second drop number, and R[2043] will be the target drop.

The <local> is an expression which evaluates to a register number within the range
of 1...2048. This value is the register within the UCM where the data from the
WRITE will be placed. If <count> value is greater that 1 then the <local> is the
starting register in the UCM for the WRITE data.

The <remote> is an expression which evaluates to a register number within the
remote SY/MAX device. This value must be within the valid register range of the
external device, usually within the range of 1...8191. Consult the manual for the
external device to determine valid register numbers. If the <count> is greater than
1 then the <remote> value is the starting register of the multiple register read.

The <count> is an expression which evaluates to the number of consecutive regis-
ters to be read with the WRITE statement. The default value is 1. The maximum
value is typically 128 but may vary with the external device.

EXAMPLE: WRITE 3 R[143] 2000, 133, 7

Where R[143] = 1123

R[1123] = 4

R[1124] = 5

R[1125] = 118

R[1126] = 102

UCM Manual 5 UCM Language Statements 51

R[1127] = 8

This WRITE statement will send a SY/MAX network write out UCM port 3 with a
dynamic route into network port 005, through the Net-to-Net ports 118, 102, and
out network port 008. The WRITE will transfer the data from UCM registers 2000
through 2007 to the external device registers 133 through 140

WRITE PROGRAM
WRITE PROGRAM <port> <local>, <remote>, <count>

The WRITE PROGRAM statement allows a UCM program to copy a group of
registers from the user register area to the program area of one of the UCM’s
ports.

The <port> is an expression which evaluates to a valid UCM port i.e. 1, 2, 3, or 4
for a UCM4 or UCM1.

The <local> is an expression which evaluates a number within the range 1 through
2048.

The <remote> is an expression which evaluates to a number within the range 2050
through 7049.

The <count> is an expression which evaluates to a number within the range 1
through 128.

EXAMPLE: WRITE PROGRAM 2 2000,6101,5

would copy 5 registers from user area R[2000] to Port 2’s program area, register
6101.

UCM Manual 6 UCM Language Functions 53

6

UCM Language Functions

The UCM language includes a variety of commonly used functions to facilitate
message generation and reception, and other program flow areas.

Checksum Functions

CRC

Form: CRC(<expr>,<expr>,<expr>)

The CRC function calculates the Cyclical Redundancy Check (CCITT standard)
upon a message. The first <expr> is the starting index. This value is number of the
character in the message where the CRC16 is to start. The second <expr> is the
ending index, usually the $ or $-1 location. The final <expr> is the initial value
for the checksum, usually a 0 or -1.

CRC16

Form: CRC16(<expr>,<expr>,<expr>)

The CRC16 function calculates the Cyclical Redundancy Check upon a message.
The first <expr> is the starting index. This value is number of the character in the
message where the CRC16 is to start. The second <expr> is the ending index, usu-
ally the $ or $-1 location. The final <expr> is the initial value for the checksum,
usually a 0 or -1.

The CRC16 is a variation of the CCITT standard CRC and is sometimes called a
CRC. The MODBUS RTU protocol uses the CRC16.

CRCAB

Form: CRCAB(<expr>,<expr>,<expr>)

The CRCAB function calculates the CRC16 Check upon a message while leaving
out the $-2 character. The first <expr> is the starting index. This value is number
of the character in the message where the CRC16 is to start. The second <expr> is
the ending index, usually the $ location. The final <expr> is the initial value for

54 UCM Language Functions 6 UCM Manual

the checksum, usually a 0.

The CRCAB is a variation of the CRC16 customized for use with the Allen-
Bradley protocols.

LRC

Form: LRC(<expr>,<expr>,<expr>)

The LRC function calculates the Longitudinal Redundancy Check upon a mes-
sage. The first <expr> is the starting index. This value is number of the character
in the message where the LRC is to start. The second <expr> is the ending index,
usually the $ or $-1 location. The final <expr> is the initial value for the check-
sum, usually a 0 or -1.

The LRC operates upon each byte of the message and the result of the function is a
byte.

LRCW

Form: LRCW(<expr>,<expr>,<expr>)

The LRCW function calculates the Longitudinal Redundancy Check upon a mes-
sage. The first <expr> is the starting index. This value is number of the character
in the message where the LRCW is to start. The second <expr> is the ending in-
dex, usually the $ or $-1 location. The final <expr> is the initial value for the
checksum, usually a 0 or -1.

The LRCW operates upon each word of the message and the result of the function
is a word.

SUM

Form: SUM(<expr>,<expr>,<expr>)

The SUM function calculates the straight hex sum of a message. The first <expr>
is the starting index. This value is number of the character in the message where
the SUM is to start. The second <expr> is the ending index, usually the $ or $-1
location. The final <expr> is the initial value for the checksum, usually a 0 or -1.

The SUM function operates upon each byte of the message and returns a byte.

SUMW

Form: SUMW(<expr>,<expr>,<expr>)

The SUMW function calculates the straight hex sum of a message. The first
<expr> is the starting index. This value is number of the character in the message
where the SUMW is to start. The second <expr> is the ending index, usually the $
or $-1 location. The final <expr> is the initial value for the checksum, usually a 0
or -1.

The SUMW function operates upon each word of the message and returns a word.

Message Description Functions

BCD - Binary Coded Decimal conversion

Usual Format: BCD(Register location, byte count)

UCM Manual 6 UCM Language Functions 55

or BCD(Register location, VARIABLE)
or BCD(Register location, VARIABLE, Register location)

Valid characters: hexadecimal 00 through 09, 10 through 19 ... 90 through 99.

Transmitting: Converts an expression into its decimal representation, breaks the
decimal number into pairs of digits and then translates each pair of digits into its
BCD character.

TRANSMIT format: BCD(<expr>,<expr>)

Receiving: Converts BCD characters into pairs of decimal digits, assembles the
pairs into a 16 bit decimal number and then compares the number to an expression
or places the number into an UCM register.

ON RECEIVE formats: BCD(R[<expr>],<expr>) or BCD((<expr>),<expr>)

Note: The UCM port must be set for 8 bit for BCD to work correctly.

BYTE - Single (lower) byte conversion

Usual Format: BYTE(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its hexadecimal representation and
transmits the lower 8 bits as a hexadecimal character.

TRANSMIT format: BYTE(<expr>)

Receiving: Interprets hexadecimal characters as 8-bit hexadecimal numbers and
then compares the numbers to an expression or places the numbers into the lower
byte of UCM registers and zeros the upper byte of these registers.

ON RECEIVE formats: BYTE(R[<expr>]) or BYTE((<expr>))

Note: If the UCM port is set to 7 bit then bit 8 will always be zero.

DEC - Decimal conversion

Usual Format: DEC(Register location, byte count)
or DEC(Register location, VARIABLE)
or DEC(Register location, VARIABLE, Register location)

Valid characters: ASCII + (plus sign), - (minus sign) and 0 through 9

Transmitting: Converts an expression into its signed decimal representation,
breaks the signed decimal number into its sign and its digits and then translates
each digit into its ASCII character.

TRANSMIT format: DEC(<expr>,<expr>)

After the significant digits the UCM pads the front of the string with ASCII zeros.
Does not transmit the plus (+) sign for positive numbers but does transmit a minus
sign (-) on negative numbers.

Receiving: Converts ASCII characters into decimal digits with a sign, assembles
the sign and digits into a 16 bit decimal number and then compares the number to
an expression or places the number into an UCM register.

ON RECEIVE formats: DEC(R[<expr>],<expr>) or DEC((<expr>),<expr>)

56 UCM Language Functions 6 UCM Manual

Total number of registers that can be affected: 1

Positive numbers can have a plus (+) sign preceding them but it is not required.
Negative numbers must have a minus (-) sign preceding them.

HEX - Hexadecimal conversion

Usual Format: HEX(Register location, byte count)
or HEX(Register location, VARIABLE)
or HEX(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and A through F

Transmitting: Converts an expression into its hexadecimal representation, breaks
the hexadecimal number into its digits and then translates each hex digit into its
ASCII character.

TRANSMIT format: HEX(<expr>,<expr>)

Maximum number of characters that can be sent:

Receiving: Translates ASCII characters into hexadecimal digits, assembles the
digits into 16 bit hex numbers and then compares the numbers to an expression or
places the numbers into UCM registers.

ON RECEIVE formats: HEX(R[<expr>],<expr>) or HEX((<expr>),<expr>)

Total number of registers that can be affected: 16 (64 characters)

HEXLC - Lower Case Hexadecimal conversion

Usual Format: HEXLC(Register location, byte count)
or HEXLC(Register location, VARIABLE)
or HEXLC(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9 and a through f

Transmitting: Converts an expression into its hexadecimal representation, breaks
the hexadecimal number into its digits and then translates each hex digit into its
ASCII character. Functions the same as HEX but accepts lower case characters a
through f.

TRANSMIT format: HEXLC(<expr>,<expr>)

Maximum number of characters that can be sent: 4

Receiving: Translates ASCII characters into hexadecimal digits, assembles the
digits into 16 bit hex numbers and then compares the numbers to an expression or
places the numbers into UCM registers. Transmits the hex alpha characters as
lower case a through f.

ON RECEIVE formats: HEXLC(R[<expr>],<expr>) or HEXLC((<expr>),<expr>)

Total number of registers that can be affected: 1 (4 characters)

IDEC conversion

Usual Format: IDEC(Register location, byte count)
or IDEC(Register location, VARIABLE)
or IDEC(Register location, VARIABLE, Register location)

UCM Manual 6 UCM Language Functions 57

Valid characters: ASCII 0 through 9 and : ; < = > ?

Transmitting: Converts an expression into its hexadecimal representation, breaks
the hexadecimal number into its digits and then translates each hex digit into its
pseudo-ASCII character. In pseudo-ASCII, hex digits 0 through 9 are there nor-
mal ASCII characters while hex digits A through F are replaced by the hex charac-
ters 3A through 3F which are the ASCII characters : ; < = > and ?.

TRANSMIT format: IDEC(<expr>,<expr>)

Receiving: Converts pseudo-ASCII characters into hexadecimal digits, assembles
the digits into 16 bit hexadecimal numbers and then compares the numbers to an
expression or places the numbers into UCM registers.

ON RECEIVE formats: IDEC(R[<expr>],<expr>) or IDEC((<expr>),<expr>)

Note: This is the format that the IDEC processors and other devices use to pass
register values. If communicating to an IDEC processor, a Square D Model 50 or
Micro-1, or any other devices that use this pseudo-ASCII protocol this is a useful
function.

OCT - Octal conversion

Usual Format: OCT(Register location, byte count)

Valid characters: ASCII 0 through 7

Transmitting: Converts an expression into its octal representation, breaks the oc-
tal number into its digits and then translates each digit into its ASCII character.

TRANSMIT format: OCT(<expr>,<expr>)

Receiving: Converts ASCII characters into octal representation.

ON RECEIVE formats: OCT(R[<expr>],<expr>) or OCT((<expr>),<expr>)

RAW - Raw register conversion

Usual Format: RAW(Register location, byte count)
or RAW(Register location, VARIABLE)
or RAW(Register location, VARIABLE, Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts registers into their hexadecimal representation and trans-
lates each 16-bit hexadecimal number into a pair of 8-bit hexadecimal characters.

TRANSMIT format: RAW(R[<expr>],<expr>)

Receiving: Interprets hexadecimal characters as 8-bit hexadecimal numbers, as-
sembles each pair of 8-bit numbers into a 16-bit hexadecimal number, high byte
then low byte, and then compares the numbers to an expression or places the num-
bers into UCM registers.

ON RECEIVE formats: RAW(R[<expr>],<expr>) or RAW((<expr>),<expr>)

Note: If the UCM port is set to 7 bit then bit 8 and bit 16 will always be 0. RAW
is an expanded version of SY/MAX packed ASCII and can be used to transmit and
receive packed ASCII characters as well as 8-bit characters.

58 UCM Language Functions 6 UCM Manual

RWORD

Usual Format: RWORD(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 16-bit hexadecimal representation,
translates the 16-bit number into a pair of 8-bit hexadecimal numbers and trans-
mits the lower eight bits and then the upper 8 bits as hexadecimal characters.

TRANSMIT format: RWORD(<expr>)

Receiving: Interprets two hexadecimal characters as two 8-bit hexadecimal num-
bers, assembles the two 8-bit numbers into a 16-bit number, first number low byte
and second number high byte, and then compares the number to an expression or
places the number into an UCM register.

ON RECEIVE formats: RWORD(R[<expr>]) or RWORD((<expr>))

Note: Like WORD but in the reverse order, low byte then high byte.

TON - Translate on

The commands TON and TOFF work with the TRANSLATE command. The
TRANSLATE command defines a string that is to be translated into another string.
This is used when a character has reserved meaning but could also be used in the
translation of data. Up to 8 TRANSLATE strings can be contained in an UCM
program.

An example: the escape character (hex 1B) could be used to interrupt a transmis-
sion but hex 1B might also be valid data. When the remote process wants to inter-
rupt transmission it sends a single hex 1B. But when the remote process wants to
send data containing hex 1B it sends 1B1B and the UCM is responsible for inter-
preting two hex 1Bs as a single 1B instead of as an escape. In this case the trans-
late command would be:

TRANSLATE 1:"\1B\1B" = "\1B"

and the command for receiving data that might contain a hex 1B:
ON RECEIVE TON(1):RAW(R[12],15):TOFF(1)

The TON command turns on translation during an ON RECEIVE or TRANSMIT.
The format for turning translation on is TON(<expr>) where <expr> is the transla-
tion number and must evaluate to be between 1 and 8. The TON is usually fol-
lowed by a TOFF.

TOFF - Translate off

The TOFF command turns off translation during an ON RECEIVE or TRANS-
MIT. The format for turning translation off is TOFF(<expr>) where <expr> is the
translation number and must evaluate to be between 1 and 8.

UNS - Unsigned decimal conversion

Usual Format: UNS(Register location, byte count)
or UNS(Register location, VARIABLE)
or UNS(Register location, VARIABLE, Register location)

Valid characters: ASCII 0 through 9

UCM Manual 6 UCM Language Functions 59

Transmitting: Converts an expression into its unsigned decimal representation,
breaks the unsigned decimal number into its digits and then translates each
digit into its ASCII character.

TRANSMIT format: UNS(<expr>,<expr>)

Receiving: Converts ASCII characters into decimal digits, assembles the digits into a
16 bit unsigned decimal number and then compares the number to an expres-
sion or places the number into an UCM register.

ON RECEIVE formats: UNS(R[<expr>],<expr>) or UNS((<expr>),<expr>)

Total number of registers that can be affected: 1

WORD

Usual Format: WORD(Register location)

Valid characters: hexadecimal 00 through FF

Transmitting: Converts an expression into its 16-bit hexadecimal representation,
translates the 16-bit number into a pair of 8-bit hexadecimal numbers and
transmits the upper eight bits and then the lower 8 bits as hexadecimal charac-
ters.

TRANSMIT format: WORD(<expr>)

Receiving: Interprets two hexadecimal characters as two 8-bit hexadecimal numbers,
assembles the two 8-bit numbers into a 16-bit number, first number the high
byte and second number the low byte, and then compares the number to an ex-
pression or places the number into an UCM register.

ON RECEIVE formats: WORD(R[<expr>]) or WORD((<expr>))

Note: Like RWORD but always high byte then low byte. Also like
RAW(R[<expr>],2).

Other Functions

CHANGED

Format: CHANGED(R[<expr>]) or CHANGED(R[<expr>] & <expr>)

The CHANGED function provides a boolean result dependent upon whether the
evaluated register or mask of the register has been altered from the last operation
of this function. The first occurrence of the CHANGED function will result in a
FALSE regardless of the state of the evaluated register.

The CHANGED function is used in any place referred to as <logical>, such as:
 IF CHANGED(R[56]) THEN GOTO reply

The CHANGED function is similar to the ON CHANGE statement, but the
CHANGED function allows program execution to continue running instead of
pausing to wait for the change to occur.

EXPIRED

Format: EXPIRED(<expr>)

The EXPIRED function tests a timer register and returns a logical true if the previ-
ously set timer has expired. (A timer is set using the SET TIMER command). For

60 UCM Language Functions 6 UCM Manual

Example:

IF EXPIRED(R[201]) THEN GOTO TIMEOUT

would test the status of the timer regiser in R[201], and jump if that timer has ex-
pired.

FLOAT

Format: FLOAT(R[<expr>])

The FLOAT function converts an integer register value to a floating point number.

The result of the FLOAT function is used as a floating point number; either to as-
sign to a floating point variable, or in a floating point calculation:
 F[101] = FLOAT(R[10]) / 10.0

Remember that Floating point numbers occupy two register locations, as they do
in the SY/MAX processor. For example, F[101] would use both registers R[101]
and R[102].

MAX

Format: MAX(<expr>,<expr>)

The MAX function provides a result of the <expr> which evaluates to the larger of
the two expressions.

MIN

Format: MIN(<expr>,<expr>)

The MIN function provides a result of the <expr> which evaluates to the smaller
of the two expressions.

SWAP

Format: SWAP(<expr>)

The SWAP function reverses the byte order of the result of the <expr>. If R[44] =
xABCD then SWAP(R[44]) would bring the result xCDAB.

PORT

PORT returns the UCM port number that the program is running. Values are 1
through 4 on an UCM4 and only 1 on an UCM1.

RTS

RTS is a variable which may be used to control the state of the Request to Send
line for a UCM port. RTS = TRUE will assert the RTS line. RTS = FALSE will
negate the RTS line. Any action which takes control over the port hardware such
as a SY/MAX operation, will override the setting of RTS.

TRUNC

Format: TRUNC(F[<expr>])

The TRUNC function converts a floating point register value to an integer number,
by truncating the fractional portion of the number.

UCM Manual 6 UCM Language Functions 61

The result of the TRUNC function is used as an integer value; either to assign to a
register variable, or in an integer calculation:
R[10] = TRUNC(F[101]) * 10

Remember that Floating point numbers occupy two register locations, as they do
in the SY/MAX processor. For example, F[101] would use both registers R[101]
and R[102].

CTS

CTS is a variable which gives the current state of Clear to Send on the UCM port.
IF CTS = TRUE then CTS is asserted by the external device. If CTS = FALSE
then CTS is negated.

UCM Manual 7 Configuration Software UCMSW 63

7

Configuration Software UCMSW

UCMSW
The UCMSW software program is provided free of charge to UCM users. This soft-
ware is used to program the operation of the UCM.

The startup screen of UCMSW is shown in Figure 7-1 on page 64. The operational
modes are selected by the highlighted menu bar on the fourth line. Selection can be
made by moving the cursor to the desired option using the arrow keys and pressing
ENTER. A short cut is provided, simply type "D" for Development, "U" for Utility,
"S" for setup or "Q" to quit.

UCMSW also contains two convenient utilities for general use, a SY/MAX Register
Viewer and a Terminal Emulator. The Register Viewer uses the same setup as the
Sy/Max functions. The Terminal Emulator has its own setup characteristics.

Data Entry Keys
Whenever data entry is allowed by the program, certain keys can be used to facilitate
data entry. They are:

BACKSPACE Move cursor left and remove character there

LEFT ARROW Move cursor to the left one character

RIGHT ARROW Move cursor to the right one character

DEL Remove the character under the cursor

INS Change between insert and overstrike modes of entry

HOME Move cursor to the left edge of the field

END Move cursor to the end of the data

Control-F Move cursor right (Forward) one word

Control-R Move cursor left (Reverse) one word

64 Configuration Software UCMSW 7 UCM Manual

Control-D Delete from the cursor to the end of the field

Control-U Delete from cursor to the beginning of the field

Control-Y Delete all characters in the field

ESC Exit the field without modifying it

ENTER Accept the contents of the field

When a field is opened for input, the cursor is positioned at the left side of the field. If
data is already present in the field, typing any character other than those listed above
will cause the field to be blanked allowing entry of new data without first deleting the
old. If it is desired to retain the previous data for editing, make sure the first key you
type is an editing key such as a left or right arrow.

Figure 7-1 Startup Screen

Development Functions
By selecting the Development menu item it is possible to choose from a variety of op-
tions to assist the development of UCM applications. The UCMSW development sys-
tem operates in the following manner:

The user selects a file name for the application, which will now be referred to as
<filename>.UCM. If <filename>.UCM exists, the user will load it to memory, other-
wise the user will be prompted to create the file. Upon selection, and loading of the
<filename>.UCM, the UCMSW performs all editing not on <filename>.UCM but
UCM$WORK.UCM. This allows the original <filename>.UCM to remain unchanged
during editing and compiling. All changes will be made on UCM$WORK.UCM.
This original <filename>.UCM will not be altered unless the "Write source to disk" is

UCM Manual 7 Configuration Software UCMSW 65

selected. This method permits changes to be made while keeping the original source
code intact.

Upon selection of Development, a new menu as shown in Figure 7-2 is displayed.
Each menu item is described below.

Figure 7-2 Development Menu

"Read source from disk"

This function reads an UCM program from disk into the work file
UCM$WORK.UCM. The file to be read should have been created by the "Write
source to disk" function described below and must have a .UCM extension. When
"Read source from disk" is selected, a window will open and ask for the name of the
file to read. The bottom part of the screen will show a list of all files with the exten-
sion .UCM in the current directory. Any subdirectories, or drives, will be shown in
square brackets. The parent directory (of which the current directory is a subdirec-
tory) is shown by the word "parent" in square brackets. You may either type the name
of the file to read or you may use the arrow keys to move the highlight to the desired
filename. Pressing ENTER with the highlight on a filename will select that file for
reading. Pressing ENTER with the highlight positioned on a directory name (either a

66 Configuration Software UCMSW 7 UCM Manual

subdirectory or [parent]) will change the current directory to that directory and will
show the .UCM files in the new directory. If there are more files than will fit on the
screen, pressing the right arrow with the highlight at the right edge of the screen will
scroll the display sideways to show more files. Typing the ESC key will return to the
offline function menu without loading a file.

"Write source to disk"

This function saves a copy of the UCM$WORK.UCM text file to a disk file. "Write
source to disk" uses the same point and shoot file selection described for "Read source
from disk" above. To create a new file you must type the name. The name should be
a valid MS/DOS filename but should not include any path name or extension. The
program will append an extension of .UCM to the name and the file will be placed in
the directory which is shown in the bottom half of the screen. To create a file in a
directory other than the current one, use the arrow and ENTER keys to traverse the
directory tree until a listing of the desired directory is shown in the bottom half of the
screen. Then type in the file name and press ENTER. If you specify (either by typing
or by pointing) a file that already exists, you will be prompted for approval before that
file is overwritten.

"eDit"

The eDit selection will open a new DOS shell with the text editor selected in the
SY/MAX Setup menu. This editor will open loaded with the file
UCM$WORK.UCM. Use the editor in the normal fashion to make changes to the text
file. Upon completion of the editing, save the work. After saving the file, exit the
editor. Upon exiting the editor, the main UCMSW menu will appear.

It is important to remember to save the file before exiting or the changes will not be
made.

"Compile"

Use this function when you wish to compile your program. The compiler will compile
the UCM$WORK.UCM file and generate the "source filename".UCC if the compile is
successful. When the compile is finished and successful the user is prompted to
download the compiled code into the UCM. If "Y" is selected the Download window
will open and the user is prompted for the port number, status register location, and
Auto-start values.

If any errors occur in the compile, the "source filename.".UCC will not be generated
and a file "UCM$WORK.ERR" will be made.

"View errors"

This function allows the viewing of UCM$WORK.ERR to see where the errors oc-
curred during the compile. This is accomplished by opening the same editor used in
eDit with the file UCM$WORK.ERR. When finished viewing the errors simply exit
the editor to return to UCMSW.

"print Source"

This function will produce a report showing the source code in UCM$WORK.UCM.
When this function is selected, you will be prompted for an output filename with the
default value of PRN shown. To send the report to the PRN device (normally the par-

UCM Manual 7 Configuration Software UCMSW 67

allel printer port), simply press ENTER. To send the report to a different port or to a
file, type the name and then press ENTER. Online configurations may be printed
with the F1 print screen key.

"print Errors"

This function will produce a report showing the error list in UCM$WORK.ERR.
When this function is selected, you will be prompted for an output filename with the
default value of PRN shown. To send the report to the PRN device (normally the par-
allel printer port), simply press ENTER. To send the report to a different port or to a
file, type the name and then press ENTER. Online configurations may be printed
with the F1 print screen key.

"downLoad compiled work file"

This routine allows the downloading of the compiled result of the file selected with
"Read source from disk". The source code must be compiled before this function is
used. This routine is called also at the end of a successful compile automatically.

The download window prompts the user for the UCM port to load the program into.
Valid ports are 1, 2, 3, or 4 on an UCM4 or only 1 on an UCM1.

The location of the status register pair is also prompted for. The default values are 2
for port 1, 4 for port 2, 6 for port 3 and 8 for port 4. This value must fall within the
range of 2 through 2047. Also each port must have its own unique value for the status
pair.

The Auto-start feature allows a port to automatically start running upon power-up.
Selecting the Auto-start feature on any of the ports forces the command register (regis-
ter 1) of the UCM to be a PLC input register with a status E000 hex. This automati-
cally prevents the PLC from controlling the running of any of the programs by setting
the command bits directly. The Auto-start feature should only be used for stand alone
applications.

"eRase file"

This function removes the selected UCM source file from the disk. "eRase file" uses
the same point and shoot file selection described for "Read source from disk" above.
The name should be a valid MS/DOS filename but should not include any path name
or extension. The program remove the file from the disk as well as removing it from
the bottom of the screen. To remove a file in a directory other than the current one,
use the arrow and ENTER keys to traverse the directory tree until a listing of the de-
sired directory is shown in the bottom half of the screen. Then type in the file name
and press ENTER.

68 Configuration Software UCMSW 7 UCM Manual

Utilities
The Utilities menu provides access to useful maintenance and testing functions of the
UCMSW software.

View module registers

Selecting the View module registers menu item will invoke a SY/MAX register data
viewer/modifier. This viewer continuously performs a block read of 20 registers and
displays the contents of those registers in hex, unsigned integer, signed integer, and
binary. The status register associated with the data register is also displayed in hex.
The register viewer is dependent on the values located in the SETUP Sy/Max menu.
Mode, Baud rate, Parity, Route, etc. must be properly set for proper communication.

The Up and Down arrow keys are used to move from register to register.

The Page Up and Page Down keys move in increments of 10 registers.

The Left and Right arrows move from column to column on the same register.

This register viewer is highly useful in that it allows easy editing of the data in the
register being viewed. By pressing 0..9 in the decimal fields or 0..9, or A..F in the hex
field, an editing mode is entered. New data may be entered at this time. Pressing the
Enter key or moving to a new field with the arrow keys will cause the new data to be
written to the edited register. If the curser is located in the REGISTER column the
block of registers being viewed may be adjusted by entering a new register number.
To edit the binary values, press HOME when on the binary field. Move the cursor to
the desired bit and enter a ’0’ or a ’1’ and press enter to accept.

Pressing Esc will exit from the Register viewer and return to the main menu. Pressing
Esc while editing a data field will result in canceling the edit and the modified data
will not be written to the register.

UCM Manual 7 Configuration Software UCMSW 69

The STAT field displays the status register associated with the data register. The
STATUS field is a read only display and can not be modified by the Register Viewer.
Two common values are E000 and A000. A000 is the hex representation that the PLC
recognizes as a PLC OUTPUT register. E000 is for a PLC INPUT register. This al-
lows easy recognition of registers used by the UCM as inputs and used by the PLC as
outputs.

Figure 7-3 View Registers

Terminal Emulator

Selecting the Terminal emulator from the Utilities menu will invoke a terminal emula-
tor according to the setup selected in the Setup menu. The terminal emulator opens as
shown in Figure .

The terminal sends the ASCII code for the alpha-numeric characters out the selected
COM port. Functions keys F1 through F4 and the keypad arrows send ANSI (i.e.
VT100) codes. F7 is reserved for starting a file capture. F8 will close the capture file.
The backspace key sends ASCII BS (08 hex). The Delete key sends and ASCII DEL
(7F hex). The Insert key allows the transmission of ASCII hexadecimal characters di-
rectly from the hex numbers separated by spaces.

The terminal displays printable ASCII characters which are received on the port.
Non-printable characters are displayed as the hexadecimal value enclosed in <>, such
as <0D><0A> indicates the carriage return, line feed characters. The terminal is al-
ways in this "monitor" mode and therefore ANSI output emulation is not provided.

70 Configuration Software UCMSW 7 UCM Manual

Figure 7-4 Terminal Emulator

Download Pre-compiled file

The downLoad pre-compiled file selection will open the download file window. (Fig-
ure 7-5) This allows the downloading of a UCM program which has already been
compiled (filename.UCC). The files which have the extension .UCC will be dis-
played. Use the cursor to select the file or type in the name.

The Download window will then appear and allow the selection of UCM port parame-
ters including status registers and Auto-start.

Baud Rate Calculator

The UCM module calculates the actual baud rate that is generated by the SET BAUD
command. This value will depend upon the actual hardware of the module. The
UCM1 will calculate a different baud rate for the same setting as the UCM4. The
Baud Rate Calculator routine is given to provide an actual baud rate value which will
be generated with the SET BAUD statement. Select the module type and enter the
baud value to be used in the SET BAUD statement and the actual baud rate that will
be generated by the UCM hardware will be displayed as in Figure 7-6.

UCM Manual 7 Configuration Software UCMSW 71

Figure 7-5 Download pre-compiled file

Figure 7-6 Baud Rate Calculator

72 Configuration Software UCMSW 7 UCM Manual

SETUP
The setup menu accesses the setup parameters for the personal computer to enable it
to communicate with the UCM and the terminal emulator. The parameters chosen
will depend on the exact equipment involved in making the connections.

SY/MAX SETUP

The connection type is mainly determined by the method of connection to outside
world and may be broken into two groups: the personal computer’s COM: port and
the SY/LINK Network Interface Card.

Personal Computer COM: port

If the connection from the personal computer is made through one of its serial ports
then the Connection type should be one of the following:

• Sy/Max COM:

• Net-to-Net COM:

• Gateway COM:

Sy/Max COM: is the default and most likely will be the one used. In this mode the
personal computer will communicate through one of its COM: ports as though it were
a SY/MAX device such as a PLC. The full SY/MAX protocol is supported including
routing so SY/MAX COM: may be used through SY/MAX mode ports on NIMs and
SPE4s with appropriate routing. This mode is to be used when a direct connection
from the personal computer COM: port is made to the UCM. In most cases an RS-
232<>RS-422 conversion is required and the Niobrara SC406 (or SC902) cable makes
this conversion very convenient.

Net-to-Net COM: is used when connecting to a NIM or SPE4 that is set to Net-to-Net
mode. The first drop number in the route will be that of the address of the NIM.

Gateway COM: is used when connecting to an SPE4 port that is in Gateway mode.
For more information about Gateway mode see the SPE4 instruction manual.

UCM Manual 7 Configuration Software UCMSW 73

Figure 7-7 SY/MAX Setup Screen

Port - When one of the COM: connection types is selected a particular port of the per-
sonal computer must be selected. Available choices are: COM1:, COM2:, COM3:,
and COM4:. Select the port which will be used to connect to the UCM.

Baud rate - The Baud rate selected here is the baud rate of the personal computer se-
rial port selected. This value should be set to match the device connected to the per-
sonal computer. An UCM has a default baud rate of 9600 and if a direct connection
is made to the UCM this is the setting that should be made on the personal computer.
If the baud rate of the UCM has been changed this value may need to be adjusted.

Data bits - When in SY/MAX or Net-to-Net modes the data bits is required to be 8
and may not be changed. The SY/MAX protocol requires 8 data bits. The Gateway
mode uses ASCII messages which do not require the full 8 data bits and may be set to
8 or 7 depending on the attached device.

Stop bits - The stop bits are normally set to 1 but may be adjusted to 2 for some par-
ticular application. The UCM is set for 1 stop bit.

Parity - SY/MAX and Net-to-Net modes normally use EVEN parity and that is the
default for the UCM. Other choices are ODD and NONE.

Route - The route is used to determine the path from the personal computer to the
UCM. If a direct connection is made from the personal computer to the UCM, i.e.
without going through a SY/NET network or an SPE4, this value is set to NONE by
pressing the Delete key. If a SY/MAX connection is made to a SY/MAX mode port
on an NIM or SPE4 the first drop will be that of the drop number of the NIM or SPE4
port. If any Net-to-Net drops are included between the port connected to the personal

74 Configuration Software UCMSW 7 UCM Manual

computer and the port connected to the UCM, they must be included in order of occur-
rence from the personal computer to the UCM. The last drop number listed will be
that of the NIM or SPE4 SY/MAX mode port that is connected to the UCM. Up to 8
total drops are supported by the SY/MAX protocol.

If the personal computer is in Net-to-Net mode the first drop will be that of the Net-to-
Net port of the NIM or SPE4 that the personal computer is connected to. Subsequent
drops will be included like above.

The Gateway mode route will include the Gateway port on the SPE4 that the personal
computer is connected and any subsequent Net-to-Net and SY/MAX drops to reach
the UCM.

SY/LINK Connection

UCMSW provides full support of the Square D SY/LINK network interface card.
Setup for the network interface is provided along with setup for the RS-422 port on
the card.

Figure 7-8 SY/LINK Setup Screen

Connection type - The RS-422 port may be set to SY/MAX or Net-to-Net modes.
For a direct connection to the UCM from the RS-422 port of the SY/LINK card
choose the Sy/Link Direct mode. If an indirect connection from the RS-422 port of
the card is made through other Net-to-Net ports choose Sy/Link Net-to-Net. If the
RS-422 port is not used and the connection is make through the SY/NET network to
another NIM, the choice does not matter.

Base address - This is a hex value that represents the SY/LINK’s cards address range
selected by DIP switches on the card. Select the same range that is set on the card.

RS422 Baud rate - Select the baud rate to match the external device, normally 9600.

RS422 Data bits - Select the data bits to match the external device, normally 8.

UCM Manual 7 Configuration Software UCMSW 75

RS422 Stop bits - Select the stop bits to match the external device, normally 1.

RS422 Parity - Select the parity to match the external device, normally EVEN.

Sy/Net speed - Select to match the speed settings of the other devices on the SY/NET.

Sy/Net size - Select to match the setting on the other SY/NET devices.

Route - The first drop in the route defines the network address of the SY/LINK
board. Since the personal computer is connected to the SY/LINK card through the
edge connector of the card, port 0, the drop number must start with 0. The remaining
two digits of that drop should be selected not to match any other device on the
SY/NET. For instance, there are three NIMs on the network addressed 01, 02, and 03.
It seems logical to make the SY/LINK card be at address 04 so the first drop in the
route field will be 004. The next drop will be that of the NIM port connected to the
UCM, or another Net-to-Net port. If Sy/Link Direct was selected and the UCM is
connected directly to the RS-422 port of the SY/LINK card the full route statement
would be 004 104 as the RS-422 port is considered to be port 1.

Terminal Emulator SETUP

The Terminal Emulator setup allows an individual setup for the operation of the termi-
nal emulator. For instance, this separate setup will allow COM1 to be used for the
UCM SY/MAX connection and COM2 to be used for a terminal emulator connection.

Figure 7-9 Terminal Emulator Setup Screen

Port - Available choices are: COM1:, COM2:, COM3:, and COM4:. Select the port
which will be used to connect to the external device.

Baud rate - The Baud rate selected here is the baud rate of the personal computer se-
rial port selected. This value should be set to match the device connected to the per-
sonal computer.

76 Configuration Software UCMSW 7 UCM Manual

Data bits - Selects the number of data bits for the message packet. Choices are 8 or 7
depending on the attached device.

Stop bits - The stop bits are normally set to 1 but may be adjusted to 2 for some par-
ticular application.

Parity - Choices are EVEN, ODD, and NONE.

Command Line Parameters
UCMSW may be started from the DOS command line with a sequence of letters
which represent the keystrokes necessary to perform any operation. This allows batch
processing of various commands such as downloading of stored setup files. The spe-
cial characters /R, /D, and /E refer to the Return key, Delete key, and Escape key re-
spectively. The parameters are not case sensitive. The following example changes the
Route to 102,055; loads the compiled file TEST.UCC into an UCM for operation on
Port 1 with the Status Register at 2, then quits. It is assumed that the UCM is con-
nected to the computer and the rest of UCMSW setup is correct.

>UCMSW S/S/R/R/R/R/R/D102,055/R/RYUlTEST/R1/R2/R/RQ

The S selects Setup, S for Sy/Max, five Return keys to get to the Route field, /D for
Delete to remove any previous route, 102,055 Return, for the new route, Y for Yes
save the setup to disk, U for Utility, L for downLoad pre-compiled file, TEST Return
for the filename, 1 Return for the port number, 2 Return for the Status Registers, Re-
turn for NO on Autostart, and finally Q for Quit.

Another way of changing the Setup is to copy the setup file to another name in DOS,
then copy it back to UCM.STP in the batch file before calling UCMSW.

UCM Manual 8 Examples 77

8

Examples

TRANSMIT message function with register references
In the following TRANSMIT examples the following initial conditions are assumed:

TRANSMIT HEX

Command: TRANSMIT HEX(R[23],4)
ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32

Command: TRANSMIT HEX(R[23],2)
ASCII Characters transmitted: B2
Decimal values: 66 50
Hex values: 42 32

Command: TRANSMIT HEX(R[23],8)
ASCII Characters transmitted: 0000A1B2
Decimal values: 48 48 48 48 65 49 66 50
Hex values: 30 30 30 30 41 31 42 32

Command: TRANSMIT HEX(R[23],VARIABLE)
ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32

Command: TRANSMIT HEX(R[23],VARIABLE R[600])

UCM
Register

Decimal Signed
Decimal

Hex Octal Binary

R[23] 41394 24142 A1B2 120662 1010 0001 1011 0010

R[24] 20318 20318 4F5E 47536 0100 1111 0101 1110

78 Examples 8 UCM Manual

ASCII Characters transmitted: A1B2
Decimal values: 65 49 66 50
Hex values: 41 31 42 32
R[600] would then equal 4.

TRANSMIT DEC

Command: TRANSMIT DEC(R[23],6)
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32

Command: TRANSMIT DEC(R[23],5)
ASCII Characters transmitted: 24142
Decimal values: 50 52 49 52 50
Hex values: 32 34 31 34 32

Command: TRANSMIT DEC(R[23],12)
ASCII Characters transmitted: -00000024142
Decimal values: 45 48 48 48 48 48 48 50 52 49 52 50
Hex values: 2D 30 30 30 30 30 30 32 34 31 34 32

Command: TRANSMIT DEC(R[23],VARIABLE)
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32

Command: TRANSMIT HEX(R[23],VARIABLE R[600])
ASCII Characters transmitted: -24142
Decimal values: 45 50 52 49 52 50
Hex values: 2D 32 34 31 34 32
R[600] would then equal 6.

TRANSMIT UNS

Command: TRANSMIT UNS(R[23],5)
ASCII Characters transmitted: 41394
Decimal values: 52 49 51 57 52
Hex values: 34 31 33 39 34

Command: TRANSMIT UNS(R[23],3)
ASCII Characters transmitted: 394
Decimal values: 51 57 52
Hex values: 33 39 34

Command: TRANSMIT UNS(R[23],8)
ASCII Characters transmitted: 00041394
Decimal values: 48 48 48 52 49 51 57 52
Hex values: 30 30 30 34 31 33 39 34

Command: TRANSMIT UNS(R[23],8)
ASCII Characters transmitted: 00041394
Decimal values: 48 48 48 52 49 51 57 52
Hex values: 30 30 30 34 31 33 39 34

UCM Manual 8 Examples 79

TRANSMIT OCT

Command: TRANSMIT OCT(R[23],6)
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32

Command: TRANSMIT OCT(R[23],3)
ASCII Characters transmitted: 662
Decimal values: 54 54 50
Hex values: 36 36 32

Command: TRANSMIT OCT(R[23], VARIABLE)
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32

Command: TRANSMIT OCT(R[23], VARIABLE R[600])
ASCII Characters transmitted: 120662
Decimal values: 49 50 48 54 54 50
Hex values: 31 32 30 36 36 32
R[600] would then equal 6.

TRANSMIT BCD

Command: TRANSMIT BCD(R[23],3)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94

Command: TRANSMIT BCD(R[23],1)
ASCII Characters transmitted: {not ASCII character}
Decimal values: 148
Hex values: 94

Command: TRANSMIT BCD(R[23],5)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 0 0 4 19 148
Hex values: 00 00 04 13 94

Command: TRANSMIT BCD(R[23], VARIABLE)
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94

Command: TRANSMIT BCD(R[23], VARIABLE R[600])
ASCII Characters transmitted: {not ASCII characters}
Decimal values: 4 19 148
Hex values: 04 13 94
R[600] would then equal 3.

80 Examples 8 UCM Manual

ON RECEIVE message functions with register references
In the following ON RECEIVE examples it assumed that a WAIT follows immedi-
ately after the ON RECEIVE command, there are no other ON RECEIVEs set up for
the WAIT and the incoming string is the following group of ASCII characters:

D876543F

Before the WAIT is executed, the following initial conditions are present:

Several of the examples have remaining characters. The remaining characters will be
received by the UCM and buffered until the next ON RECEIVE is reached by the pro-
gram. This is not good programming practice unless these characters are meant to be
handled elsewhere in the program. If they are not handled correctly, ON RECEIVEs
later in the program may give unexpected results.

ON RECEIVE HEX

Command: ON RECEIVE HEX(R[23],4) RETURN
Results after WAIT:
Characters used: D876
Translated to: hex D876

Remaining characters: "543F"

Command: ON RECEIVE HEX(R[23],8) RETURN
Results after WAIT:
Characters used: D876543F
Translated to: hex D876 and hex 543F

Note: Every character is used by this HEX function. The string was meant for
a statement similar to this one, in that it handles all of the characters.

Command: ON RECEIVE HEX(R[23],2) RETURN
Results after WAIT:
Characters used: D8
Translated to: hex D8

UCM
Register

Hex Unsigned
Decimal

Decimal Octal Binary

R[23] A1B2 41394 -24142 120662 1010 0001 1011 0010

R[24] 03F5 1013 1013 1765 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 D876 55,414 -10,122 1101 1000 0111 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 1001

Hex Unsigned
decimal

Decimal Binary

Register 23 D876 55,414 -10,122 1101 1000 0111 0110

Register 24 543F 21,567 21,567 1001 1000 0011 1111

UCM Manual 8 Examples 81

Remaining characters: "76543F"

ON RECEIVE DEC

Command: ON RECEIVE DEC(R[23],4) RETURN
Results after WAIT:
Characters used: D8765
Translated to: decimal 8,765

Note: The first received character "D" is ignored by the DEC() function. This
is all right but if a D is always the leading character then a program
statement like ON RECEIVE "D":DEC(R[23],4) may be better.

Remaining characters: "43F"

Command: ON RECEIVE DEC(R[23],5) RETURN
Results after WAIT:
Characters used: D87654
Translated to: decimal 87,654%65,536 = 22,118

Note: The first "D" is ignored similar to the previous ON RECEIVE..
Remaining characters: "3F"

Command: ON RECEIVE DEC(R[23],2) RETURN
Results after WAIT:
Characters used: D87
Translated to: decimal 87

Note: The "D" is ignored as above.
Remaining characters: "6543F"

ON RECEIVE UNS

Command: ON RECEIVE UNS(R[23],4) RETURN
Results after WAIT:

Hex Unsigned
decimal

Decimal Binary

Register 23 00D8 216 216 0000 0000 1101 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 223D 8,765 8,765 0010 0010 0011 1101

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 5666 22,118 22,118 0101 0110 0110 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 0057 87 87 0000 0000 0101 0111

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

82 Examples 8 UCM Manual

Characters used: D8765
Translated to: unsigned decimal 8,765

Note: the first received character "D" is ignored by the UNS() function.
Remaining characters: "43F"

Command: ON RECEIVE UNS(R[23],5) RETURN
Results after WAIT:
Characters used: D87654
Translated to: unsigned decimal 87,654%65,536 = 22,118

Note: The "D" is ignored. The next five characters "87654" do not make a
valid unsigned decimal number and so the UNS() function takes the in-
coming number and does a modulus 65,536. In this case the result is
22,118.

Remaining characters: "3F"

Command: ON RECEIVE UNS(R[23],2) RETURN
Results after WAIT:
Characters used: D87
Translated to: decimal 87

Note: The "D" is ignored.
Remaining characters: "6543F"

ON RECEIVE OCT

Command: ON RECEIVE OCT(R[23],5) RETURN
Results after WAIT:
Characters used: D876543
Translated to: octal 76543

Note: The first two received characters "D8" are not octal digits and are ig-
nored by the OCT() function.

Hex Unsigned
decimal

Decimal Binary

Register 23 223D 8,765 8,765 0010 0010 0011 1101

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 5666 22,118 22,118 0101 0110 0110 0110

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 0057 87 87 0000 0000 0101 0111

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 7D63 32,099 32,099 0111 1101 0110 0011 076543

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

UCM Manual 8 Examples 83

Remaining characters: "F"

Command: ON RECEIVE OCT(R[23],2) RETURN
Results after WAIT:
Characters used: D876
Translated to: octal 76

Note: The "D" and the "8" are ignored.
Remaining characters: "543F"

Command: ON RECEIVE OCT(R[23],6) RETURN
Results after WAIT:
Characters used: D876543F
Translated to: nothing

Note: Since "D", "8" and "F" are not valid octal characters they are lost by the
OCT command. Between the "8" and the "F" the octal characters
"76543" were received, which is only 5 characters instead of the 6 re-
quired by this ON RECEIVE. Since the next character "F" was not an
octal character the previous 5 characters are ignored as not matching 6
octal characters in a row. So, not enough octal characters have been
transmitted for this command. If this command is used without an ON
TIMEOUT then the program will wait until 6 octal characters in a row
are sent before completing this ON RECEIVE. Also note that register
23 has not yet changed.

Remaining characters: None - waiting for 6 octal characters in a row

ON RECEIVE BCD

Command: ON RECEIVE BCD(R[23],2) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44 and 38)
Translated to: decimal 4,438

Note: The first two received characters "D" and "8" are used by the BCD()
function. The "D" is a hex character 44 and the "8" is a hex character 38
and so the unsigned decimal value is 4438.

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 003E 62 62 0000 0000 0011 1110 000076

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

Hex Unsigned
decimal

Decimal Binary Octal

Register 23 A1B2 41,394 -24,142 1010 0001 1011 0010 120662

Register 24 03F5 1,013 1,013 0000 0011 1111 0101 001765

Hex Unsigned
decimal

Decimal Binary

Register 23 1156 4,438 4,438 0001 0001 1001 1010

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

84 Examples 8 UCM Manual

Remaining characters: "76543F"

Command: ON RECEIVE BCD(R[23],4) RETURN
Results after WAIT:
Characters used: D876 (hexadecimal 44 38 37 36)
Translated to: decimal 44,383,736 converted to 15,864

Note: Both register 23 were changed
Remaining characters: None

ON RECEIVE RAW

Command: ON RECEIVE RAW(R[23],2) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44 38)
Translated to: hexadecimal 4438

Note: The "D" is an hex 44 and the "8" is a hex 38 so register 23 is now 4438
Remaining characters: "76543F"

Command: ON RECEIVE RAW(R[23],1) RETURN
Results after WAIT:
Characters used: D (hexadecimal 44)
Translated to: hexadecimal 4400

Note: The RAW function places the first character into the upper bits of the
register and zeros the rest of the bits.

Remaining characters: "876543F"

Command: ON RECEIVE RAW(R[23],4) RETURN
Results after WAIT:
Characters used: D876 (hexadecimal 44 38 37 36)
Translated to: hexadecimal 4438 and 3736

Hex Unsigned
decimal

Decimal Binary

Register 23 6AF8 15,864 15,864 0110 1010 1111 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 4400 17,408 17,408 0100 0100 0000 0000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 3736 14,134 14,134 0011 0111 0011 0110

UCM Manual 8 Examples 85

Note: RAW changed both register 23 and 24
Characters remaining: "543F"

ON RECEIVE BYTE

Command: ON RECEIVE BYTE(R[23]) RETURN
Results after WAIT:
Characters used: D (hexadecimal 44)
Translated to: hexadecimal 0044

Note: Only R[23] is changed.
Characters remaining: "876543F"

ON RECEIVE WORD

Command: ON RECEIVE WORD(R[23]) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44, 38)
Translated to: hexadecimal 4438

Note: Only R[23] is changed.
Characters remaining: "76543F"

ON RECEIVE RWORD

Command: ON RECEIVE RWORD(R[23]) RETURN
Results after WAIT:
Characters used: D8 (hexadecimal 44, 38)
Translated to: hexadecimal 3843

Note: Only R[23] is changed.
Characters remaining: "76543F"

READ Examples
The READ statement allows SY/MAX compatible priority READ commands to be
sent from UCM port under UCM program control. The READ statement is sent using
static or dynamic routes.

Hex Unsigned
decimal

Decimal Binary

Register 23 0044 68 68 0000 0000 0100 0100

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 4438 17,464 17,464 0100 0100 0011 1000

Register 24 03F5 1,013 1,013 0000 0011 1111 0101

Hex Unsigned
decimal

Decimal Binary

Register 23 3843 14,403 14,403 0011 1000 0100 0011

Register 24 03F5 1.013 1.013 0000 0011 1111 0101

86 Examples 8 UCM Manual

Static Route READ

The static route read is used when it is not necessary to change the target of the read
statement.

The statement

 READ 1 (101, 45) 100, 130, 5

will send a READ out UCM port 1, into the network port 101, out the network port
045, and read the data in registers 130 through 135 in the attached device. The results
of these registers will be placed in the UCM registers 100 through 105.

A convenient use for the static route read might be the following:

FOR R[30] = 1 to 5 STEP 2

READ 2 (101, 77, 24) 100+R[30], 100*R[30], 2

NEXT

This routine would copy registers 100, 101 in the remote device and place these in
UCM registers 100 and 101, remote registers 300, 301 into UCM registers 103, 104,
and remote registers 500, 501 into UCM registers 105 and 106.

If a route is not needed, such as when a SY/MAX device is directly connected to the
UCM port, simply use ().

READ 3 () 2040, 3124, 5

Dynamic Route READ

The dynamic route read is similar to the indirect read in the SY/MAX processor. The
UCM register R[<expr] in the route section of the READ provides a pointer to that
UCM register which contains the number of drops in the route, N. The next N regis-
ters contain the actual drop numbers of the N drops. For example,

Assume: R[200] = 3
R[201] = 55
R[202] = 110
R[203] = 100 when the following READ is performed.

READ 1 R[200] 15, 25, 6

This READ will be sent out UCM port 1, into network port 55, through the Net-to-Net
port 110 and out network port 100, read registers 25 through 31 in the remote device
and return the data to UCM registers 15 through 21.

This type of READ is very powerful as it allows easy control of the drops and number
of drops of a communication. For example, suppose UCM port 2 is connected to a
SPE4 port in SY/MAX mode with a drop number of 30. On port 31 of the SPE4 is a
network of 6 PowerLogic Circuit Monitors with addresses 01 through 06. (This port
is in PLOGIC mode.) Assume R[1000] = 3, R[1001] = 30, and R[1002] = 31. The
following loop will read registers 1 through 28 in each CM an place them in registers
11 through 183.

FOR R[10] = 1 to 6

R[1003] = R[10]

UCM Manual 8 Examples 87

READ 2 R[1000] 11+(R[10]-1)*28, 1, 28

NEXT

WRITE Examples
The WRITE statement allows SY/MAX compatible priority WRITE commands to be
sent from UCM port under UCM program control. The WRITE statement is sent us-
ing static or dynamic routes.

Static Route WRITE

The static route write is used when it is not necessary to change the target of the write
statement.

The statement

 WRITE 1 (101, 45) 100, 130, 5

will send a WRITE out UCM port 1, into the network port 101, out the network port
045, and write the data from UCM registers 100 through 105 to registers 130 through
135 in the attached device.

A convenient use for the static route write might be the following:

FOR R[30] = 1 to 5 STEP 2

WRITE 2 (101, 77, 24) 100+R[30], 100*R[30], 2

NEXT

This routine would copy registers 100, 101 in the UCM to registers 100 and 101 in the
remote device, UCM registers 102, 103 into remote registers 300, 301, and UCM reg-
isters 105, 106 into remote registers 500 and 501.

If a route is not needed, such as when a SY/MAX device is directly connected to the
UCM port, simply use ().

WRITE 3 () 2040, 3124, 5

Dynamic Route WRITE

The dynamic route write is similar to the indirect write in the SY/MAX processor.
The UCM register R[<expr] in the route section of the WRITE provides a pointer to
that UCM register which contains the number of drops in the route, N. The next N
registers contain the actual drop numbers of the N drops. For example,

Assume: R[200] = 3
R[201] = 55
R[202] = 110
R[203] = 100 when the following WRITE is performed.

WRITE 1 R[200] 15, 25, 6

This WRITE will be sent out UCM port 1, into network port 55, through the Net-to-
Net port 110 and out network port 100, copy UCM registers 15 through 21 into remote
device’s registers 25 through 31.

88 Examples 8 UCM Manual

PRINT Examples
The network PRINT statement allows easy use of the UCM’s message commands for
sending data out SY/NET peripheral ports. Any message that may be sent with the
TRANSMIT statement may be sent with the PRINT statement.

Suppose a modem is connected to peripheral drop 101. The UCM port 1 is connected
to SY/MAX drop 154. To send the Hayes command ATDT5551212 to the modem
simply use the command:

PRINT 1 (154, 101) "ATDT5551212"

To hang up the modem later, use the following:

DELAY 100

PRINT 1 (154, 101) "+++"

DELAY 100

PRINT 1 (154,101) "ATH0"

and the modem will return to command mode and hang up.

The PRINT command also has the dynamic route like the READ and WRITE state-
ments.

UCM Manual 9 Compiling 89

9

Compiling

COMPILE.EXE
COMPILE.EXE is an MS-DOS compatible program for compiling the UCM configu-
ration text file into machine readable code. All UCM configurations must be com-
piled before they can be downloaded into the UCM. The downloading is done by an-
other MS-DOS compatible program UCMLOAD.EXE described in a later section of
the manual.

The COMPILE command syntax is as follows:

COMPILE filename[.ext] [-Ofile2] [-Dmacro=string] [-L file3]

Where filename refers to the text file containing the source code for the UCM.

The .ext is an optional extension to the filename. If no extension is included then
.UCM is assumed by the compiler.

Options can appear in any order.

-O option

The -O option is for specifying an output file other than filename.ucc. If the -O option
is not used then COMPILE will create the output file filename.ucc. If the -O option is
used then COMPILE will create an output file named file2. If an extension is desired
for file2 it needs to be added since no extension is assumed by the compiler.

-D option

The -D option is for specifying DEFINE macros at compile time. This is very useful
for compiling one UCM configuration file for 2 or more ports of the same UCM mod-
ule. The macro portion of the -D option is the string inside of the UCM configuration
file that is to be found while string portion is macro’s replacement. It is equivalent to
Find what: macro Change to: string in DOS EDIT.

90 Compiling 9 UCM Manual

If, in the configuration file AMAZING.UCM, the word Time has been used and Time
needs to have a value of 50 then the DOS command to compile AMAZING with the
Time replacement is:

COMPILE AMAZING -DTime=50

If the compile completes with no errors then the output file AMAZING.UCC will be
created. If more than one DEFINE is needed at compile time then they can be added
to the end of the COMPILE command as in:

COMPILE AMAZING -DTime=50 -DPort=1 -DFlavor=strawberry

-L option

The -L option is for telling the compiler to also generate a 68000 source listing. The
name of the DOS text file is file3. If an extension is desired for file3 it needs to be
added since no extension is assumed by the compiler.

The 68000 source listing, file3, is a text file that can be read by your favorite text edi-
tor. If you have any questions about the way the compiler generates code for the
UCM then you can use the -L option. Most users will not have a use for this option.

Compiler Errors
When the UCM configuration file contains code that the compiler does not recognize,
variables out of range, code that is too long or any other error then the compiler gener-
ates an error listing. This listing will have the compiler error number, the line number
in the .UCM file where the error occurred, a copy of the line in question, and a de-
scription of the error. The listing will also summarize the total number of errors de-
tected.

The programmer can use this listing to correct problems in the UCM configuration
file. Since no object code is generated if an error occurs during the compile, all errors
must be repaired before a valid object file can be made for downloading into the
UCM.

Debugging

For debugging purposes the user may want to store the error listing in a file in order to
refer to it later. This can be accomplished with the output redirection feature of DOS.
For example:

COMPILE filename >error.lst

The text that normally would go to the screen will now appear in the text file error.lst .

A complete listing of the compiler errors appears in Chapter 10 - Compiler Error
Listing.

UCM Manual 10 Compiler Error Listing 91

10

Compiler Error Listing

ERROR 1 - Expression expected for function parameter
example: Transmit HEX(,2)
Functions require 1 or more expressions. i.e. HEX(R[20],2).

ERROR 2 - Comma expected after function parameter
example: MIN(R[23] 9)
Functions with 2 or more expressions require commas to separate expressions

i.e. MIN(R[23],9).

ERROR 3 - Right parenthesis expected after last function parameter
example: SWAP(R[45]
Functions require parenthesis around the expressions i.e. SWAP(R[45])

ERROR 4 - Parameter must be a register reference
example: RAW(8*4,2)
The RAW function requires a register reference i.e. RAW(R[32],2)

ERROR 5 - Register number expression expected
example: R[]
An expression must go between the parenthesis R[<expr>]

ERROR 6 - Register number not in 1..2048
examples: R[2049] or R[0]
There are only 2,048 registers in the UCM. Do not try to use registers outside

of this range.

ERROR 7 - Right bracket missing from register reference
example: R[15] = R[9
Registers take the form R[<expr>] with the brackets [] required.

ERROR 8 - Closing quote missing in literal string
example: TRANSMIT "Hello
Literal strings are enclosed in quotes "<string>". A \" can be used to embed a

quote inside the string.

92 Compiler Error Listing 10 UCM Manual

ERROR 9 - Unmatched parenthesis in message description
example:

ERROR 10 - Message description expected
An ON CHANGE or ON RECEIVE has been used without any message.

ERROR 11 - Parameter must be a register for parse mode
The first <expr> of a message function (HEX, DEC, UNS, OCT, BCD) has

been used in an ON RECEIVE instead of (<expr>). To generate and
match <expr> surround it with parenthesis, i.e. HEX((R[23]),2).

ERROR 12 - Unmatched parenthesis in arithmetic expression
example:

ERROR 13 - GOTO or RETURN expected
An ON RECEIVE or ON CHANGE has been used without a GOTO or RE-

TURN.

ERROR 14 - Label expected after GOTO
A label is missing in a GOTO. Should be GOTO <label>.

ERROR 15 - GOTO undefined label
example: GOTO Jail
A label has been referenced in a GOTO statement that is not in the UCM file.

Be sure that the label ends in a colon i.e. Jail:.

ERROR 16 - Timeout value missing
example: ON TIMEOUT GOTO Jail
ON TIMEOUT requires an expression i.e. ON TIMEOUT 10 GOTO Jail

ERROR 17 - Colon missing after label or statement misspelled
example: main
Colons are needed after labels i.e. main:.

ERROR 18 - Arithmetic expression expected in assignment
example:

ERROR 19 - Equal expected in assignment
example:

ERROR 20 - Constant expected for translation number
example:

ERROR 21 - Translation number not in 1..8
example:

ERROR 22 - Colon expected after translation number
example:

ERROR 23 - Equal expected in translation statement

UCM Manual 10 Compiler Error Listing 93

example:

ERROR 24 - Statement expected
example:

ERROR 25 - Translation too long
example:

ERROR 26 - Messages are limited to 256 characters
example:

ERROR 27 - Expression too complex. Use register for intermediate variable
example:

ERROR 28 - Literal translation string expected
example:

ERROR 29 - Expecting non-empty translate from string
example:

ERROR 30 - Expecting translate to string
example:

ERROR 31 - Constant out of range -32768..65535
example:

ERROR 32 - String function width over than 64 characters
example:

ERROR 33 - String function width negative
example:

ERROR 34 - SET statement must be followed by constant
example:

ERROR 35 - Control code in literal string (use \\xx notation) or missing quote
example:

ERROR 36 - SET value is out of range
example:

ERROR 37 - Object code is too large
example:

94 Compiler Error Listing 10 UCM Manual

ERROR 38 - The compiler ran out of memory
example:

ERROR 39 - Output message will be too long
example:

ERROR 40 - Input message will be too long
example:

ERROR 41 - On change must be followed by a register reference
example:

ERROR 42 - Constant register number required
example:

ERROR 43 - Expression expected for bit number
example:

ERROR 44 - Reserved but non-implemented statement

ERROR 45 - SET missing

ERROR 46 - SET not followed by setable parameter
SET needs to be followed by either BAUD, PARITY, STOP, CAPITALIZE,

DEBUG or R[<expr>].<const>.

ERROR 47 - ON missing
CHANGE, TIMEOUT and RECEIVE need to be preceded by ON.

ERROR 48 - ON not followed by appropriate parameter
ON needs to be followed by either RECEIVE, CHANGE or TIMEOUT.

ERROR 49 - Logical constant must be FALSE (0) or TRUE (1)
example:

ERROR 50 - Function name should be followed by left parenthesis
 example:

ERROR 51 - Expected delay time expression
 example:

ERROR 52 - Logical expression required
example:

UCM Manual 10 Compiler Error Listing 95

ERROR 53 - Goto or gosub expected in if statement
example:

ERROR 54 - Statement is unreachable
Code has been written that in a section that does not have a label.

ERROR 55 - IF not followed by GOTO, GOSUB, or THEN
example:

ERROR 56 - Equal expected in FOR
example: FOR R[2] 1 TO 16
An equal sign is required after the register, i.e. FOR R[2] = 1 to 16.

ERROR 57 - Expression expected in FOR
example: FOR R[2] = TO 16
FOR statement requires start and end values, i.e. FOR R[2] = 1 TO 16.

ERROR 58 - TO expected
example: FOR R[2] = 1 16
FOR statements require TO, i.e. FOR R[2] = 1 TO 16.

ERROR 59 - Register reference expected in FOR
example: FOR N = 1 to 16
FOR loops require their counters to be registers. N can be defined by using

DEFINE statements in the UCM file, i.e. DEFINE N = R[2], or by using
the -D option of the compiler, i.e. COMPILE TEST -DN=R[2]

ERROR 60 - Missing WEND
example: WHILE R[9]<5 R[8]=R[8]*R[8] R[9]=R[9]+1
WHILE <logical> one or more statements WEND is the structure of a WHILE,

i.e. WHILE R[9]<5 R[8]=R[8]*R[8] R[9]=R[9]+1 WEND

ERROR 61 - Missing ENDIF
An IF <logical> THEN has been followed by a newline but no ENDIF. No

ENDIF is required if statements are made on the same line as the IF but
if a newline is used after the THEN and before a statement then an
ENDIF is required.

ERROR 62 - Missing NEXT
A FOR has been used without a NEXT. Each FOR statement requires a NEXT

statement.

ERROR 63 - Missing UNTIL
A REPEAT statement has been used without an UNTIL. The format is RE-

PEAT on or more statements UNTIL <logical>.

ERROR 64 - No statement in ELSE clause

ERROR 65 - Duplicate label
A label name has been used twice in the same UCM file. Only the first 20

characters of a string are used by the compiler so strings longer than this
are truncated to the first 20 characters and may then match.

ERROR 66 - Bit selector operator (.) not followed by constant or left parenthesis

96 Compiler Error Listing 10 UCM Manual

example:

ERROR 67 - Bit number out of range 1..16
example: TOGGLE R[2].0
Register bits are numbered from 1 to 16. Any constant expression that evalu-

ates outside this range is an invalid bit number.

ERROR 68 - Attempt to DEFINE a reserved word
example: DEFINE END=16
Reserved words can not be used in DEFINE statements.

ERROR 69 - Insufficient memory for macro definition
example:

ERROR 70 - Missing = in macro definition
example:

ERROR 71 - Macro expansion requires too much memory
example:

ERROR 72 - Division by 0
example: R[12]/((2*3)-6)
The compiler evaluates constant expressions at compile time to reduce UCM

processor time. If the denominator evaluates to 0 then this error occurs
at compile time.

ERROR 73 - Bit operator not followed by register reference
example: CLEAR 1
The bit operators (SET, CLEAR & TOGGLE) must be followed by a register

reference and a bit number reference i.e. CLEAR R[2].1.

ERROR 74 - Bit delimiter (.) missing in bit operation
example: SET R[2]1
A period is required by the bit operators (SET, CLEAR & TOGGLE) between

the register reference and the bit number, i.e. SET R[2].1.

ERROR 75 - Right parenthesis missing after dynamic bit number
example:

UCM Manual 11 Local Registers 97

11

Local Registers

Table 11-1 Module Register List

Register Legal Values Function

1 0..F (hex) Command Register Bits 1..4 control Ports 1..4

2 any Default location for Error Register for Port 1.

3 any Default location of Line Number Register for Port 1.

4 any Default location for Error Register for Port 2.

5 any Default location of Line Number Register for Port 2.

6 any Default location for Error Register for Port 3.

7 any Default location of Line Number Register for Port 3.

8 any Default location for Error Register for Port 4.

9 any Default location of Line Number Register for Port 4.

10..2048 any User Variables

2049 0..4 Port Number for program loading.

2050 any Number of bytes loaded.

2051..7049 any Program loading area.

7050..8175 Reserved for future use, do not modify

8176 8001..8004
(hex)

Value indicates the UCM Port number to which the reading
device is attached. 8000 + Port # (Read only)

8177..8186 Packed ASCII message giving the module’s name and
firmware revision. (Read only)

8187 Status of CTS on Ports 1..4. (Read only)

8188 999X (hex) NR&D Module Identifier. The last digit indicates the
command register setup for Auto-start upon power up.

8189 1..2047 Pointer to the location of the Status Register Pair for Port 1.

8190 1..2047 Pointer to the location of the Status Register Pair for Port 2.

8191 1..2047 Pointer to the location of the Status Register Pair for Port 3.

8192 1..2047 Pointer to the location of the Status Register Pair for Port 4.

UCM Manual 12 Connector Pinouts 99

12

Connector Pinouts

RS-422 ports on UCM4-D (DE9S with slide lock posts)

1 TX- transmit data (inverted) from UCM4 to output device

2 TX+ transmit data (noninverted) from UCM4 to output device

3 RX- receive data (inverted) from data source to UCM4

4 RX+ receive data (noninverted) from data source to UCM4

5 CTS- must be more negative than pin 7 to allow UCM4 to transmit

6 RTS- driven low (0V) when UCM4 is ready to receive data

7 CTS+ must be more positive than pin 5 to allow UCM4 to transmit

8 RTS+ driven high (+5V) when UCM4 is ready to receive data

9 Shield ground. AC coupled to the chassis.

RS-232 ports on UCM4-S (DE9P with screw lock posts)

1 CD input no connection in UCM4

2 RXD input serial data from external device

3 TXD output serial data to external device

4 DTR output pulled up to +10 volts internally

5 SG signal ground

6 DSR input no connection in UCM4

7 RTS output normally high (+10), driven low (-10) when internal buffers are filling
faster than data can be processed.

8 CTS input must be high for multiplexer to be able to transmit. This pin is usually
connected to DTR of a printer. Ensure that the attached device can provide this or

100 Connector Pinouts 12 UCM Manual

tie it to pin 4 (DTR).

9 RI input no connection in UCM4

RS-485 ports on a UCM4-M (DE9S with slide lock posts)

1 TX- transmit data (inverted) from UCM4 to output device

2 TX+ transmit data (noninverted) from UCM4 to output device

3 RX- receive data (inverted) from data source to UCM4

4 RX+ receive data (noninverted) from data source to UCM4

5 CTS- must be more negative than pin 7 to allow UCM4 to transmit

6 RTS- driven low (0V) when UCM4 is ready to receive data

7 CTS+ must be more positive than pin 5 to allow UCM4 to transmit

8 RTS+ driven high (+5V) when UCM4 is ready to receive data

9 Shield ground. AC coupled to the chassis.

RS-422 port on a UCM1-D (DE9S with slide lock posts)

1 TX- transmit data (inverted) from UCM1 to connected device

2 TX+ transmit data (noninverted) from UCM1 to connected device

3 RX- receive data (inverted) from connected device to UCM1

4 RX+ receive data (noninverted) from connected device to UCM1

5 +5 VDC

6 +5 VDC

7 Logic ground and +5V return

8 Logic ground

9 Shield ground. AC coupled to the chassis

UCM Manual 13 Recommended Cabling 101

13

Recommended Cabling

Cabling required to configure an UCM
Configuration files are downloaded from an MS-DOS personal computer into the
UCM. The factory default configuration for the module is that all ports not running a
user program are SY/MAX, 9600 baud, 8 data bits, EVEN parity, 1 stop bit which
may be used for downloading user programs or for viewing and modifying UCM reg-
isters. The correct cabling needs to be installed to connect the personal computer to an
UCM port.

UCM-D to personal computer cabling

Connecting the RS-422 UCM-D is very easy using Niobrara’s SC406 (or SC902) RS-
232 to RS-422 converter cable. If the personal computer has a 25-pin RS-232 port
then no adapters are needed. If the personal computer has a 9-pin RS-232 port then a
Niobrara SD034 25-pin to 9-pin adapter is needed for the SC406. The SC902 cable
will plug directly into the 9-pin port of the personal computer so no adapter is needed..
If the UCM is an UCM1-D then the SC406 gets power from the RS-422 port of the
module. If the UCM is an UCM4-D then an AC adapter, which is included with the
cable, is needed to power the SC406 and SC902.

UCM4-S to personal computer cabling

If the UCM is a -S then a straight connection to the RS-232 port of the PC may be
made to any of the RS-232 ports of the module.

UCM-M to personal computer Cabling

If the UCM is a -M an SC406 (or SC902) can be used to connect the PC comm port to
an UCM port.

Note: The included power supply with the SC406 (or SC902) must be used when
connecting to ports 1-4 of the UCM4-D or UCM4-M. The power supply is not needed
when connecting to the RS-422 port of the UCM1-D or the UCM1-M. The SC406 (or
SC902) RS-232 to RS-422 converter cable may be used whenever a single RS-232

102 Recommended Cabling 13 UCM Manual

port is required on a UCM-D or when a single RS-422 port is needed on an UCM4-S.
It should be noted that the SC406 (or SC902) does not support handshaking and that
functionality of certain features of the UCM may not be implemented. But in most
cases this will not be a concern.

Cabling required to connect a UCM port to an external device

UCM-D RS-422 to SY/MAX RS-422 port

This is a Niobrara DC1 cable.

RS-232 DCE (modem) to UCM4-S RS-232 port

RS-232 DTE (terminal) to UCM4-S RS-232 port

DE−9P DE−9P

1 pair 1 3

2 pair 1 4

3 pair 2 1

4 pair 2 2

5 5

6 6

7 7

8 8

9 shield 9

DB−25P DE−9S

2 3

3 2

5 8

7 5

20 4

DB−25P DE−9S

2 2

3 3

20 8

5 7

7 5

4

6

8

UCM Manual 13 Recommended Cabling 103

UCM-D RS-422 port to PowerLogic ®
 RS-485

Male RS-232 DTE (personal computer) to UCM4-S RS-232 port

DB−25P (input) Circuit Monitor Unit N Circuit Monitor Unit 1

1 IN - IN -

2 IN + IN +

3 OUT - OUT -

4 OUT + OUT +

5

6

7

8

9 SHIELD SHIELD

DB−25S DE−9S

2 2

3 3

20 8

5 7

7 5

4

6

8

UCM Manual A Overview of UCM Demo Programs 105

Appendix A

Overview of UCM Demo Programs

An overview of the UCM configuration files DEMO1.UCM through DEMO4.UCM.

There are 4 files that demonstrate UCM configuration files and several features of the
UCM language. They are:

DEMO1.UCM (Brute force method for one port)
DEMO2.UCM (Uses registers as variables to reduce the length of the code)
DEMO3.UCM (Uses DEFINE command to make code more readable)
DEMO4.UCM (A single configuration file that works for multiple ports by us-

ing compiler variables)

UCM configuration functional description

There are 2 units connected to one port of the UCM. The PLC writes commands des-
tined for Unit 1 into register 10 and commands for Unit 2 into register 11.

Once a command is received (register 10 or 11 has changed), the UCM puts together a
message and sends it to the appropriate unit. The message is constructed as follows:

STX Unit# Command EOT Checksum CR

The unit receives the command and, if the checksum is OK and the command is valid,
attempts to execute the command. If the unit performs the command correctly the unit
replies as follows:

Unit# Command ACK Checksum CR

If the checksum is bad, an illegal function has been requested, or an error occurs as the
unit is attempting a valid command the reply is as follows:

Unit# Command Errorcode NAK Checksum CR

After a response is received from the unit or there is no response for 50 mS after 3
attempts, register 12 is set by the UCM to report the results.

Once the status has been reported by the UCM, the PLC must then clear the control-

106 Overview of UCM Demo Programs A UCM Manual

ling command register (R[10] or R[11]) and the UCM will respond by clearing the
status and error response registers (R[12]..R[14]). The process is ready to start again
with a command register written by the PLC.

DEMO1.UCM description:

The file DEMO1.UCM, when compiled and loaded into the UCM, allows port 1 to
meet the functional description described above in a brute force method. The follow-
ing is a line by line description of the file DEMO1.UCM.

The file starts off with register and variable descriptions which are comments. Com-
ments are enclosed in braces {} and can be many lines long. Comments are ignored by
the compiler so they can be anywhere in the program including in the middle or end of
a line of code.

The first line of code that the UCM would see is the SET command. Here the port is
configured for communication with the Units. When the program is not running the
port is configured as a SY/MAX compatible port.

The next line of code is the label Main_loop:. Labels are always followed by colon :.

The next three lines of code work together. ON CHANGE, ON TIMEOUT and WAIT
always work together. The ON CHANGE and ON TIMEOUT set up the UCM for the
WAIT statement. As many ON CHANGEs or ON TIMEOUTs can be used as needed
for the application. Once the UCM sees the WAIT command it waits until one of the
ON CHANGE or ON TIMEOUT conditions is met. In this case the UCM could wait
forever since there is no ON TIMEOUT. Once register 10 (R{10]) or register 11
(R[11]) changes the UCM jumps to the label write_unit_1 or the label write_unit_2
respectively.

The next line of code is the label write_unit_1. If R[10] has changed then the PLC has
written a command destined for Unit 1 and the UCM will have jumped to this label.
R[2048] is the retry counter and is set to 3 for this application. The line retry_1: is a
label for retrying when a unit does not respond in the correct amount of time. Notice
that the UCM will follow from setting the retry counter through the retry_1 label to
decrimenting the retry counter.

The next line checks to see if the message has been sent three times yet. If so, then
R[2048] will be less than 0 and the UCM will jump to the label no_reply_1. If not, the
UCM will continue with the TRANSMIT line.

The TRANSMIT command is a very powerful method for implementing communica-
tion protocols. It allows the programmer to set up a complete message, including data
conversions and checksums all in one line of code. In this example, the protocol of
command request for the Units is implemented in this single line of code. The "\02" is
a literal 2 digit hex number 02 or start of text (STX). Any part of a transmit or receive
that is in quotes is a literal value and any literal value preceded by a \ is a hex number.
The colons in the transmit and receive commands concatenate the message together.
The next "1" is a literal ASCII 1 (or a hex 31 or a decimal 49).

UCM Manual A Overview of UCM Demo Programs 107

The next part of the TRANSMIT statement is HEX(R[10],1) which takes register 10
and makes a single character out of the least significant byte. If it had been
HEX(R[10],2) then two characters would have been made from the least significant
byte of R[10]. If it had been HEX(R[10],4) then four characters would have been
made from the single register R[10]. There are similar functions for decimal (DEC),
unsigned (UNS), octal (OCT), and binary coded decimal (BCD).

The next part of the TRANSMIT "\03" is a literal 2 digit hex number 03 or an end of
text character (EOT). The next part, BYTE(LRC(1,4,0)), needs to be broken up into
two parts. The LRC(1,4,0) calculates a longitudinal redundancy check of bytes 1
through 4 (the STX through the EOT) with a starting value of zero. The BYTE()
makes a single BYTE (a two digit hex number) out of this checksum. If the checksum
is greater than hex FF, say hex 13B, then the BYTE() would produce 3B. The "\0D" is
a literal 2 digit hex number 0D (decimal 13) or a carriage return character (CR).

The next 4 lines work together as described earlier. This time there are two ON RE-
CEIVEs and one ON TIMEOUT before the WAIT. The UCM either receives the first
string, receives the second string or it waits a total of 50 mS before it jumps to another
location. If characters other then those described in the strings are received by the
UCM they are ignored.

If the first string is received, the UCM jumps to the label good_reply_1. If the second
string is received, the UCM jumps to the label nack_1. If 50 mS expire and neither
string has been completely received or there has been a CRC error then the UCM
jumps to the label retry_1.

The ON RECEIVE command is a very powerful way to implement the receiving end
of a communications protocol. It works much the same as the TRANSMIT in that the
expected protocol can be written in a very few ON RECEIVE commands. In this case
the first ON RECEIVE is the format for a good response from the Unit with no errors.
The second ON RECEIVE is the format of an error type response from the Unit with
the error encoded into the response.

The first part of the first ON RECEIVE "1" expects an ASCII 1 (hex 31 or decimal
49). The HEX((R[10]),1) expects to match the value that is in register 10. Notice that
there is a set of parenthesis around the R[10]. This tells the UCM to match the value in
R[10]. If the parenthesis were missing then it would tell the UCM to put the next char-
acter into register 10.

The "\06" is a literal 2 digit hex number 06 or an acknowledge (ACK). The
BYTE((LRC(1,3,0)) is broken into two parts as above. The LRC(1,3,0) calculates a
longitudinal redundancy check of characters 1 through 3 with a start value of zero
(from the "1" through the ACK). The parenthesis around the LRC means to match and
the BYTE means only match a single byte (throw away any part greater than hex FF
as above). Also as before, the "\0D" is a carriage return.

The second ON RECEIVE is similar to the first except it expects one extra character,
the errorcode, which it interprets as a hex digit and puts into register 13 in the section
HEX(R[13],1). Notice that there are no parenthesis around the R[13]. The ACK is re-
placed by a NAK (hex 15) and the LRC is calculated on four characters instead of

108 Overview of UCM Demo Programs A UCM Manual

three in LRC(1,4,0) (from the "1" through the NAK).

The 5 in the ON TIMEOUT is 50 mS. A 1 is 10 mS and a 400 is 4,000 mS or 4 sec-
onds.

The UCM reaches the next label good_reply_1 by jumping here from the first ON RE-
CEIVE described above. Register 12 is then set to 1 and the UCM jumps to
wait_for_clear.

The UCM reaches the next label nack_1 by jumping here from the second ON RE-
CEIVE described above. R[12] is then set to 2 and the UCM jumps to wait_for_clear.

The next label, no_reply_1, is reached if no reply is received from Unit 1 after three
attempts. R[12] is set to 4. The UCM falls through to the next label wait_for_clear.

The ON CHANGE and the WAIT work together. No ON TIMEOUT means the UCM
will wait until it sees register 10 change. Once R[10] has been changed by the PLC the
UCM will jump to the label clear_status.

After the UCM reaches the clear_status label, register 12, R[13] and R[14] are all set
to zero. This lets the PLC know that the UCM is ready to receive another command.
The next line, GOTO Main_loop jumps back to near the beginning of the program to
start the cycle over again.

The rest of the program, from write_unit_2: through the WAIT in no_reply_2, works
the same as described in the sections for write_unit_1 through no_reply_1. The differ-
ences are:

The TRANSMITs and ON RECEIVEs use 2 instead of 1 for the unit number
and R[11] instead of R[10] as the command register.

The first ON RECEIVE jumps to good_reply_2 instead of good_reply_1.

The second ON RECEIVE uses R[14] in place of R[13] for the communica-
tion error register and jumps to nack_2 instead of nack_1.

The ON TIMEOUT jumps to retry_2 instead of retry_1.

R[12] is set to 256 instead of 1 (good_reply_2), 512 instead of 2 (nack_2) and
1024 instead of 4 (no_reply_2).

The PLC needs to change R[11] instead of R[10] to let the UCM know when
it is finished with the data (wait_for_clear_2).

DEMO2.UCM description:

The DEMO2.UCM configuration file is functionally equivalent to DEMO1.UCM but
requires less code and thus less memory inside of the UCM module. Since the
write_unit_1 through no_reply_1 sections are so similar to the write_unit_2 through
no_reply_2 sections of DEMO1.UCM, these sections have been combined and 3 new
registers have been added for variable storage.

The sections write_unit_1 and write_unit_2 now set the variables for the write: section
of the program. Register 2047 holds the unit number of interest, register 2046 holds

UCM Manual A Overview of UCM Demo Programs 109

the number of the command register and register 2045 holds the number of the error
register. Both sections call on the write: section to accomplish the TRANSMIT and
ON RECEIVEs.

If R[2047], R[2046] and R[2045] are replaced with their respective values in the
write: section, then this section would read just like either the write_unit_1 or
write_unit_2 section with two exceptions. In the TRANSMIT, where the unit number
previously was either a "1" or a "2" it is now HEX(R[2047],1) which will produce
either a "1" or a "2" if R[2047] is equal to 1 or 2. In the ON RECEIVE sections, the
"1" or "2" has been replaced with HEX((R[2047]),1) which matches the value in
R[2047] instead of placing the character received into register 2047 and so is function-
ally equivalent.

The duplicate good_reply_1 & good_reply_2, nack_1 & nack_2, no_reply_1 &
no_reply_2 have all been replaced with single sections good_reply, nack and no_reply
that make use of variable registers. Comparing the previous sections with the new sec-
tions is a straightforward exercise.

DEMO3.UCM Description:

The DEMO3.UCM file takes the previous DEMO2.UCM file and uses the DEFINE
command to make the code easier to read. The syntax of the command is DEFINE
string_1=string_2. The DEFINE is interpreted by the compiler as a find and replace.
Find string_1 and replace it with string_2. It is very much like doing a find and replace
inside of a text editor.

Besides being easier to read it is also easier to write configuration files using the DE-
FINE command. The programmer does not have to remember numbers for each vari-
able but can remember a name. For example it is easier to remember that the com-
mand register is called Command then to remember it is R[2046]. Note that the UCM
ignores the case of a letter unless it is inside of quotes. So Command is the same as
command but "Command" is not the same as "command".

There are 14 DEFINE commands used in DEMO3.UCM. They are right after the SET
command. The file DEMO2.UCM could be generated by editing DEMO3.UCM, do-
ing 14 find and replace commands starting with Find: Command_1 and Replace with:
R[10] and ending with Find: CR and Replace with: "\0D" and erasing the DEFINE
command lines.

The UCM requires a configuration file for each port that will be used. Since the regis-
ters listed in a configuration file are actual rack addressable registers then the registers
used in one configuration would not normally be used in another configuration file in-
side of the same UCM. If several ports of the UCM were going to be connected to
similar equipment then the configuration files would be similar except for the registers
used.

DEMO3.UCM could be edited with a text editor and the registers changed so that the
configuration could be used in another UCM port. This will work fine but if 4 ports
are used then there are 4 configuration files that will need to be created. Careful de-
bugging of the first file could keep changes to a minimum but if the application

110 Overview of UCM Demo Programs A UCM Manual

changes in the future then there are 4 files to update and maintain. An easier method to
create multiple configuration files is described in the next section.

DEMO4.UCM Description:

The UCM configuration file DEMO4.UCM has been changed to allow it to be used in
any port. The port and control registers are set by using compiler variables at compile
time. This compiler feature reduces the amount of time the programmer spends devel-
oping and debugging configuration programs and also reduces the number of files that
must be maintained once in production.

The compiler variables are very similar to the DEFINE command described in the
DEMO3.UCM DESCRIPTION section but instead of being defined when the configu-
ration file is written they are defined at compile time. The user types the command
COMPILE followed by the define option -Dstring1=string2. Whenever string1 is
found in the configuration file it is replaced by string2.

When compiling DEMO4 for Port 1 the PLC control registers are 10 through 14 and
the variables are stored in registers 2,048 through 2,045. In the program the variable
Base is the first control register and the variable Vbase is the largest variable register.
The DOS command to create a UCC file for downloading into Port 1 of the UCM is:

COMPILE demo4 -Odemop1.ucc -DBase=10 -DVbase=2048

The compile program will create a file DEMOP1.UCC which is ready to download
into port 1 of the UCM. Also at compile time the variables Base and Vbase are re-
placed with the numbers 10 and 2,048 respectively. The DOS command to download
this program into the UCM would be:

UCMLOAD 1 demop1 com1:

And likewise the DOS commands for Port 2 are:

COMPILE demo4 -Odemop2.ucc -DBase=15 -DVbase=1948
UCMLOAD 2 demop2 com1:

The file DEMOP2.UCC is created by the compile program. In this case the control
registers for port 2 are 15 through 19 and variables are stored in registers 1948 through
1945.

DOS commands for Port 3:

COMPILE demo4 -Odemop3.ucc -DBase=20 -DVbase=1848
UCMLOAD 3 demop3 com1:

File created: DEMOP3.UCC Control registers: 20-24 Variable registers: 1848-1845

DOS commands for Port 4:

COMPILE demo4 -Odemop4.ucc -DBase=25 -DVbase=1748
UCMLOAD 4 demop4 com1:

File created: DEMOP4.UCC Control registers: 25-29 Variable registers: 1748-1745

To install 2 units onto each of the 4 ports of the UCM (8 total units) requires 29 rack
address registers. The register map is as follows:

UCM Manual A Overview of UCM Demo Programs 111

R[1] = UCM Program Control Register R[15] = Command register for Unit 1 Port 2
R[2] = Port 1 status register R[16] = Command register for Unit 2 Port 2
R[3] = Port 1 line number register R[17] = Unit response status Port 2
R[4] = Port 2 status register R[18] = Unit 1 communication error Port 2
R[5] = Port 2 line number register R[19] = Unit 2 communication error Port 2
R[6] = Port 3 status register R[20] = Command register for Unit 1 Port 3
R[7] = Port 3 line number register R[21] = Command register for Unit 2 Port 3
R[8] = Port 4 status register R[22] = Unit response status Port 3
R[9] = Port 4 line number register R[23] = Unit 1 communication error Port 3
R[10] = Command register for Unit 1 Port 1 R[24] = Unit 2 communication error Port 3
R[11] = Command register for Unit 2 Port 1 R[25] = Command register for Unit 1 Port 4
R[12] = Unit response status Port 1 R[26] = Command register for Unit 2 Port 4
R[13] = Unit 1 communication error Port 1 R[27] = Unit response status Port 4
R[14] = Unit 2 communication error Port 1 R[28] = Unit 1 communication error Port 4

R[29] = Unit 2 communication error Port 4

Reducing the rack address space of the UCM

The default location of the UCM status registers is 2 through 9. If, in your application,
rack address space is at a premium or the rack scan time needs to be reduced then the
UCM status registers can be moved from registers 2 through 9 to other registers that
do not have to be rack addressed. The UCM status registers are very useful for debug-
ging your application but may not be required for operation. The first register of the
UCM, the program control register, cannot be moved.

Using compiler variables in the UCM configuration file, as in example DEMO4.UCM,
allows the programmer to utilize the UCM status registers while debugging and then
reduce the rack address space as required by the application. If the application has two
units connected to each of 4 ports of the UCM the DOS commands for compiling and
loading the configurations into the UCM are as follows:

COMPILE demo4 -Odemo4p1.ucc -DBase=2 -DVbase=2048
COMPILE demo4 -Odemo4p2.ucc -DBase=7 -DVbase=1948
COMPILE demo4 -Odemo4p3.ucc -DBase=12 -DVbase=1848
COMPILE demo4 -Odemo4p4.ucc -DBase=17 -DVbase=1748
UCMLOAD 1 demop1 com1: -s22
UCMLOAD 2 demop2 com1: -s24
UCMLOAD 3 demop3 com1: -s26
UCMLOAD 4 demop4 com1: -s28

When using the commands listed the programmer can either rack address the UCM for
21 registers for minimum rack address space or 29 registers in order to see the UCM
status registers for debugging purposes. A register map follows:

R[1] = UCM Program Control Register
R[2] = Command register for Unit 1 Port 1 R[12] = Command register for Unit 1 Port 3
R[3] = Command register for Unit 2 Port 1 R[13] = Command register for Unit 2 Port 3
R[4] = Unit response status Port 1 R[14] = Unit response status Port 3
R[5] = Unit 1 communication error Port 1 R[15] = Unit 1 communication error Port 3
R[6] = Unit 2 communication error Port 1 R[16] = Unit 2 communication error Port 3
R[7] = Command register for Unit 1 Port 2 R[17] = Command register for Unit 1 Port 4
R[8] = Command register for Unit 2 Port 2 R[18] = Command register for Unit 2 Port 4
R[9] = Unit response status Port 2 R[19] = Unit response status Port 4
R[10] = Unit 1 communication error Port 2 R[20] = Unit 1 communication error Port 4

112 Overview of UCM Demo Programs A UCM Manual

R[11] = Unit 2 communication error Port 2 R[21] = Unit 2 communication error Port 4

The following registers can be read by the PLC if the rack address space of the UCM
is large enough, 29 registers.

R[22] = Port 1 status register
R[23] = Port 1 line number register
R[24] = Port 2 status register
R[25] = Port 2 line number register
R[26] = Port 3 status register
R[27] = Port 3 line number register
R[28] = Port 4 status register
R[29] = Port 4 line number register

UCM Manual B DEMO1.UCM 113

Appendix B

DEMO1.UCM

{**

REGISTER DESCRIPTION WHO WRITES
R[1] program control register PLC
R[2]..R[9] program status registers UCM
R[10] command register for unit 1 PLC
R[11] command register for unit 2 PLC
R[12] Unit response status UCM

Bit 1 Good reply from unit 1
Bit 2 Error reply from unit 1
Bit 3 No reply from unit 1
Bit 9 Good reply from unit 2
Bit 10 Error reply from unit 2
Bit 11 No reply from unit 2

R[13] Unit 1 communication error UCM
R[14] Unit 2 communication error UCM

Rack address 14 registers for the UCM

VARIABLES:

R[2048] retry counter
**}

SET BAUD 9600 PARITY EVEN DATA 8 STOP 1 CAPITALIZE FALSE

Main_loop:
ON CHANGE R[10] GOTO write_unit_1
ON CHANGE R[11] GOTO write_unit_2

WAIT

write_unit_1:
R[2048] = 3 { R[2048] is retry counter }
retry_1:

R[2048] = R[2048] - 1
IF R[2048] < 0 THEN GOTO no_reply_1
TRANSMIT "\02":"1":HEX(R[10],1):"\03":BYTE(LRC(1,4,0)):"\0D"

114 DEMO1.UCM B UCM Manual

ON RECEIVE "1":HEX((R[10]),1):"\06":BYTE((LRC(1,3,0))):"\0D" GOTO good_reply_1
ON RECEIVE "1":HEX((R[10]),1):HEX(R[13],1):"\15":BYTE((LRC(1,4,0))):"\0D" GOTO

nack_1
ON TIMEOUT 5 GOTO retry_1

WAIT

good_reply_1:
R[12] = 1
GOTO wait_for_clear

nack_1:
R[12] = 2
GOTO wait_for_clear

no_reply_1:
R[12] = 4
wait_for_clear:

ON CHANGE R[10] GOTO clear_status {Wait for PLC to clear R[10]}
WAIT

clear_status:
R[12] = 0 {clear status register}
R[13] = 0 {clear Unit 1 error}
R[14] = 0 {clear Unit 2 error}
GOTO Main_loop

write_unit_2:
R[2048] = 3
retry_2:

R[2048] = R[2048] - 1
IF R[2048] < 0 THEN GOTO no_reply_2
TRANSMIT "\02":"2":HEX(R[11],1):"\03":BYTE(LRC(1,4,0)):"\0D"

ON RECEIVE "2":HEX((R[11]),1):"\06":BYTE((LRC(1,3,0))):"\0D" GOTO good_reply_2
 ON RECEIVE "2":HEX((R[11]),1):HEX(R[14],1):"\15":BYTE((LRC(1,4,0))):"\0D" GOTO

nack_2
 ON TIMEOUT 5 GOTO retry_2
WAIT

good_reply_2:
R[12] = 256
GOTO wait_for_clear_2

nack_2:
R[12] = 512
GOTO wait_for_clear_2

no_reply_2:
R[12] = 1024
wait_for_clear_2:

ON CHANGE R[11] GOTO clear_status {Wait for PLC to clear R[11]}
WAIT

UCM Manual C DEMO2.UCM 115

Appendix C

DEMO2.UCM

{**
REGISTER DESCRIPTION WHO WRITES
R[1] program control register PLC
R[2]..R[9] program status registers UCM
R[10] command register for unit 1 PLC
R[11] command register for unit 2 PLC
R[12] Unit response status UCM

Bit 1 Good reply from unit 1
Bit 2 Error reply from unit 1
Bit 3 No reply from unit 1
Bit 9 Good reply from unit 2
Bit 10 Error reply from unit 2
Bit 11 No reply from unit 2

R[13] Unit 1 communication error UCM
R[14] Unit 2 communication error UCM
Rack address 14 registers for the UCM

VARIABLES:
R[2048] retry counter
R[2047] Unit number
R[2046] Command register
R[2045] Error register
Note that the variables are not rack addressed.
**}

SET BAUD 9600 PARITY EVEN DATA 8 STOP 1 CAPITALIZE FALSE

Main_loop:
ON CHANGE R[10] GOTO write_unit_1
ON CHANGE R[11] GOTO write_unit_2
WAIT

write_unit_1:
R[2047] = 1
R[2046] = 10
R[2045] = 13

116 DEMO2.UCM C UCM Manual

GOTO write

write_unit_2:
R[2047] = 2
R[2046] = 11
R[2045] = 14

write:
R[2048] = 3 { R[2048] is retry counter }
retry_loop:
R[2048] = R[2048] - 1
IF R[2048] < 0 THEN GOTO no_reply
TRANSMIT "\02":HEX(R[2047],1):HEX(R[R[2046]],1):"\03":BYTE(LRC(1,4,0)):"\0D"

ON RECEIVE HEX((R[2047]),1):HEX((R[R[2046]]),1):"\06":BYTE((LRC(1,3,0))):"\0D" GOTO
good_reply
 ON RECEIVE
HEX((R[2047]),1):HEX((R[R[2046]]),1):HEX(R[R[2045]],1):"\15":BYTE((LRC(1,4,0))):"\0D"

 GOTO nack
 ON TIMEOUT 5 GOTO retry_loop
WAIT

good_reply:
R[12] = 1
IF R[2047] = 2 then R[12] = 256
GOTO wait_for_clear

nack:
R[12] = 2
IF R[2047] = 2 then R[12] = 512
GOTO wait_for_clear

no_reply:
R[12] = 4
IF R[2047] = 2 then R[12] = 1024
wait_for_clear:
ON CHANGE R[R[2046]] GOTO clear_status {Wait for PLC to clear command register}
WAIT

clear_status:
R[12] = 0 {clear status register}
R[13] = 0 {clear Unit 1 error}
R[14] = 0 {clear Unit 2 error}
GOTO Main_loop

UCM Manual D DEMO3.UCM 117

Appendix D

DEMO3.UCM

{**
REGISTER DESCRIPTION WHO WRITES
 R[1] program control register PLC
 R[2]..R[9] program status registers UCM
 R[10] command register for unit 1 PLC
R[11] command register for unit 2 PLC
R[12] Unit response status UCM

Bit 1 Good reply from unit 1
Bit 2 Error reply from unit 1
Bit 3 No reply from unit 1
Bit 9 Good reply from unit 2
Bit 10 Error reply from unit 2
Bit 11 No reply from unit 2

R[13] Unit 1 communication error UCM
R[14] Unit 2 communication error UCM
Rack address 14 registers for the UCM

VARIABLES:
R[2048] retry counter
R[2047] Unit number
R[2046] Command register
R[2045] Error register
Note that the variables are not rack addressed.
**}

SET BAUD 9600 PARITY EVEN DATA 8 STOP 1 CAPITALIZE FALSE

DEFINE Command_1 = R[10]
DEFINE Command_2 = R[11]
DEFINE Status = R[12]
DEFINE Error_1 = R[13]
DEFINE Error_2 = R[14]
DEFINE Retry = R[2048]
DEFINE Unit = R[2047]
DEFINE Command = R[2046]
DEFINE Error = R[2045]

118 DEMO3.UCM D UCM Manual

DEFINE STX = "\02"
DEFINE EOT = "\03"
DEFINE ACK = "\06"
DEFINE NAK = "\15"
DEFINE CR = "\0D"

Main_loop:
ON CHANGE Command_1 GOTO write_unit_1
ON CHANGE Command_2 GOTO write_unit_2
WAIT

write_unit_1:
Unit = 1
Command = 10
Error = 13
GOTO write

write_unit_2:
Unit = 2
Command = 11
Error = 14

write:
Retry = 3
retry_loop:
Retry = Retry - 1
IF Retry < 0 THEN GOTO no_reply
TRANSMIT STX:HEX(Unit,1):HEX(R[Command],1):EOT:BYTE(LRC(1,4,0)):CR

ON RECEIVE HEX((Unit),1):HEX((R[Command]),1):ACK:BYTE((LRC(1,3,0))):CR GOTO
good_reply
 ON RECEIVE
HEX((Unit),1):HEX((R[Command]),1):HEX(R[Error],1):NAK:BYTE((LRC(1,4,0))):CR

 GOTO nack
 ON TIMEOUT 5 GOTO retry_loop
WAIT

good_reply:
Status = 1
IF Unit = 2 THEN Status = 256
GOTO wait_for_clear

nack:
Status = 2
IF Unit = 2 THEN Status = 512
GOTO wait_for_clear

no_reply:
Status = 4
IF Unit = 2 THEN Status = 1024
wait_for_clear:
ON CHANGE R[Command] GOTO clear_status {Wait for PLC to clear command register}
WAIT

clear_status:
Status = 0 {clear status register}
Error_1 = 0 {clear Unit 1 error}
Error_2 = 0 {clear Unit 2 error}

UCM Manual D DEMO3.UCM 119

GOTO Main_loop

UCM Manual E DEMO4.UCM 121

Appendix E

DEMO4.UCM

{**
REGISTER DESCRIPTION WHO WRITES
R[1] program control register PLC
R[2]..R[9] program status registers UCM
R[10] command register for unit 1 PLC
R[11] command register for unit 2 PLC
R[12] Unit response status UCM

Bit 1 Good reply from unit 1
Bit 2 Error reply from unit 1
Bit 3 No reply from unit 1
Bit 9 Good reply from unit 2
Bit 10 Error reply from unit 2
Bit 11 No reply from unit 2

R[13] Unit 1 communication error UCM
R[14] Unit 2 communication error UCM
Rack address 14 registers for the UCM

VARIABLES:
R[2048] retry counter
R[2047] Unit number
R[2046] Command register
R[2045] Error register
Note that the variables are not rack addressed.

*************}

SET BAUD 9600 PARITY EVEN DATA 8 STOP 1 CAPITALIZE FALSE

DEFINE Command_1 = R[Base]
DEFINE Command_2 = R[Base+1]
DEFINE Status = R[Base+2]
DEFINE Error_1 = R[Base+3]
DEFINE Error_2 = R[Base+4]
DEFINE Retry = R[Vbase]
DEFINE Unit = R[Vbase-1]
DEFINE Command = R[Vbase-2]

122 DEMO4.UCM E UCM Manual

DEFINE Error = R[Vbase-3]
DEFINE STX = "\02"
DEFINE EOT = "\03"
DEFINE ACK = "\06"
DEFINE NAK = "\15"
DEFINE CR = "\0D"

Main_loop:
ON CHANGE Command_1 GOTO write_unit_1
ON CHANGE Command_2 GOTO write_unit_2
WAIT

write_unit_1:
Unit = 1
Command = Base
Error = Base+3
GOTO write

write_unit_2:
Unit = 2
Command = Base+1
Error = Base+4

write:
Retry = 3
retry_loop:
Retry = Retry - 1
IF Retry < 0 THEN GOTO no_reply
TRANSMIT STX:HEX(Unit,1):HEX(R[Command],1):EOT:BYTE(LRC(1,4,0)):CR

ON RECEIVE HEX((Unit),1):HEX((R[Command]),1):ACK:BYTE((LRC(1,3,0))):CR GOTO
good_reply
 ON RECEIVE
HEX((Unit),1):HEX((R[Command]),1):HEX(R[Error],1):NAK:BYTE((LRC(1,4,0))):CR

 GOTO nack
 ON TIMEOUT 5 GOTO retry_loop
WAIT

good_reply:
Status = 1
IF Unit = 2 THEN Status = 256
GOTO wait_for_clear

nack:
Status = 2
IF Unit = 2 THEN Status = 512
GOTO wait_for_clear

no_reply:
Status = 4
IF Unit = 2 THEN Status = 1024
wait_for_clear:
ON CHANGE R[Command] GOTO clear_status {Wait for PLC to clear command register}
WAIT

clear_status:
Status = 0 {clear status register}
Error_1 = 0 {clear Unit 1 error}

UCM Manual E DEMO4.UCM 123

Error_2 = 0 {clear Unit 2 error}
GOTO Main_loop

UCM Manual F Serial Communication Overview 125

Appendix F

Serial Communication Overview

This Appendix is meant to provide a general background for common types of asyn-
chronous serial communication.

Hardware Overview
The need for information to be exchanged between independent devices has brought
about the development of several serial communication standards. The most com-
monly encountered are RS-232, RS-422, RS-485, and 20mA current loop.

RS-232

RS-232 is intended for connecting two devices together for serial communication for
short distances (50 feet or less) and low baud rates (19200 baud or less).

RS-232-C has two main classes of devices: DTE (Data Terminal Equipment) such as
terminals and personal computers, and DCE (Data Communication Equipment) such
as modems.

The original implementation of the RS232 connection was for connecting terminals to
modems as shown in Figure F-1 The standard connectors were mounted on the equip-
ment were DB25 females. Straight through cables with 25 pin male connectors were
used to connect the DTE to DCE.

Figure F-1 DTE to Modem connection

Each pin on the DTE was connected to the same pin on the DCE. The most common
pins and their definitions are listed below.

Terminal
DTE Modem DCE Modem DCE

Terminal
DTE

Telephone
Link

Straight through cable

126 Serial Communication Overview F UCM Manual

Pin 2: TD Transmit Data

This circuit is the path that serial data is sent from the DTE to the DCE.

Pin 3: RD Receive Data

This circuit is the path that serial data is sent from the DCE to the DTE.

Pin 4: RTS Request to Send

This circuit is the signal that indicates that the DTE wishes to send data to the
DCE. In normal operation the RTS line will be OFF (MARK). Once the DTE has
data to send it asserts RTS (SPACE) and waits for the DCE to assert CTS. RTS
will remain asserted until the data is completely sent. In a full duplex channel,
RTS may be asserted at initialization and left in that state.

Pin 5: CTS Clear to Send

This circuit is the signal that indicates that the DCE is ready to receive data from
the DTE. In normal operation the CTS is not asserted. When the DTE asserts
RTS, the DCE will do whatever is necessary to allow data to be sent. (This may
mean raising the carrier and waiting until it is stabilized.) When the DCE is ready,
it asserts CTS which allows the DTE to send data. When the DTE is finished
sending data it will reset the RTS and the DCE will in turn reset its CTS.

Note: Most DTE must have CTS asserted before it will transmit.

Pin 6: DSR Data Set Ready

This circuit is the signal that informs the DTE that the DCE is active. It is nor-
mally asserted by the DCE at power-up and left that way.

Note: Most DTE must have DSR asserted to operate properly.

Pin 7: SG Signal Ground

This circuit is the ground to which all signals are referenced.

Pin 8: DCD Data Carrier Detect

This circuit is the signal that the DCE informs the DTE that it has an incoming
carrier.

Note: Some DTE must have DCD asserted to operate properly. Also, some per-
sonal computer modems always assert DCD.

Pin 20: DTR Data Terminal Ready

This circuit provides the signal that informs the DCE that the DTE is alive and
well. It is normally asserted by the DTE at power-up and left in that state.

Note: Most DCE must have DTE asserted to operate properly.

Pin 22: RI Ring Indicator

This circuit provides the signal from the DCE to indicate that the modem is ring-
ing. The line is asserted by the DCE during each ring cycle.

The full pinout for the standard 25 pin connector is shown in Figure F-1.

With the down-sizing of computers it became necessary to move to a 9 pin port to
save room. Only the most commonly used functions were kept for the 9 pin configu-

UCM Manual F Serial Communication Overview 127

ration. The TYPE A and TYPE B configurations are shown in Figures F-2 and F-3.
The only difference is pins 2 and 3.

Table F-1 25 pin RS-232 port

In the above table, the character following the pin number means:

* rarely used
+ used only if secondary channel implemented
used only in synchronous interfaces

Although originally all DB25 RS-232 ports were female, most personal computers
which have a DB25 RS-232 connector use a male connector. The female DB25
connector on a personal computer is most likely the parallel printer port and
should never be connected to any RS-232 device.

As is indicated above, the 25 RS-232 standard has the option of 2 data channels, each
with their own handshake lines, and the option of synchronous link. These functions
are rarely used and have been left off of the newer 9 pin ports.

Pin Name DTE/DCE Function

1 CG <---> Frame Ground

2 TD ---> Transmitted Data

3 RD <--- Received Data

4 RTS ---> Request to Send

5 CTS <--- Clear to Send

6 DSR <--- Data Set Ready

7 SG <---> Signal Ground

8 DCD <--- Data Carrier Detect

9* <--- Positive DC Test Voltage

10* <--- Negative DC test Voltage

11* QM <--- Equalizer Mode

12+ SDCD <--- Secondary Data Carrier Detect

13+ SCTS <--- Secondary Clear to Send

14+ STD ---> Secondary Transmitted Data

15# TC <--- Transmit Clock

16+ SRD <--- Secondary Receive Data

17# RC <--- Receive Clock

18 DCR <--- Divided Clock Receiver

19+ SRTS ---> Secondary Request to Send

20 DTR ---> Data Terminal Ready

21* SQ <--- Signal Quality Detect

22 RI <--- Ring Indicator

23* <--- Data Rate Selector

24* SCTE ---> Data Rate Selector

25* ---> Busy

128 Serial Communication Overview F UCM Manual

Table F-2 Type A 9 pin RS-232 port

Table F-3 Type B 9 pin RS-232 port

The TYPE B connection is the most common on 9 pin personal computer ports.
These ports are usually male connectors.

Determining the type of RS-232 port with a voltmeter.

It is possible to determine the type of port with the use of a voltmeter using the follow-
ing procedure:

1 Set the voltmeter for DC volts, 30 volt range. The voltage being read likely be
negative and be within the range of +3VDC to -15VDC.

2 Power up the equipment.

3 Place the negative probe (black) of the voltmeter on the SG pin of the port. (Pin 7
of a DB25 port or pin 5 of a DE9 port)

4 Place the positive probe (red) of the voltmeter on pin 2.

5 Write down that voltage.

6 Place the positive probe (red) of the voltmeter on pin 3.

7 Write down that voltage.

The TX voltage is within the range of -15V to -5V.
The RX voltage is within the range of -3V to +3V.

Pin Name Function

1 DCD Data Carrier Detect

2 TD Transmitted Data

3 RD Received Data

4 DTR Data Terminal Ready

5 SG Signal Ground

6 DSR Data Set Ready

7 RTS Request to Send

8 CTS Clear to Send

9 RI Ring Indicator

Pin Name Function

1 DCD Data Carrier Detect

2 RD Received Data

3 TD Transmitted Data

4 DTR Data Terminal Ready

5 SG Signal Ground

6 DSR Data Set Ready

7 RTS Request to Send

8 CTS Clear to Send

9 RI Ring Indicator

UCM Manual F Serial Communication Overview 129

Therefore, if pin 2 is the more negative voltage of the two, the serial port is TYPE A.
If pin 3 is the more negative voltage, the serial port is TYPE B.

Since almost every device that is not a modem is a DTE, it is quite common to connect
DTE to DTE without a modem pair. A "null modem" connection has been established
to simplify this situation. It simply reverses the transmit and receive connections from
one side of the connector to another and jumpers some of the hardware handshake
lines.

Figure F-2 Null Modem connection

The null modem is frequently a small enclosure with one male connector and one fe-
male connector. Sometimes the null modem is built into a single cable to connect the
DTE device to another DTE device. In addition to the crossing of the transmit and
receive pins, some additional connections to the hardware handshake pins is usually
made the pinouts of null modems for 25 pin and 9 pin connections are shown below.

Terminal
DTE

Straight through cable

Null Modem
Terminal

DTE

Table F-4 DB25 Null Modem

Male
Connector

Female
Connector

1 1

2 3

3 2

4 5

5 4

6 20

8 6

20 8

7 7

130 Serial Communication Overview F UCM Manual

Electrical characteristics of RS-232
The RS-232 interface is an Single-Ended driver with an open ended receiver. The
driver asserts a voltage between -5V and -15V relative to the Signal Ground to repre-
sent the MARK state (Logic TRUE). The driver asserts a voltage between +5V and
+15V relative to the Signal Ground to represent a SPACE state (Logic FALSE). The
fact that there may be a 30 volt swing between MARK and SPACE conditions may
lead to problems with the slew rate of the signal due to the capacitance of the cable. If
the cable run is long and communication problems are occurring, try lowering the
baud rate.

RS-422

The RS-422 interface uses a closed ended driver and a closed ended receiver. The RS-
232 interface is ground referenced. This can cause trouble in situations where a com-
mon mode induced noise may severely affect the signal by changing the reference. A
better solution for noise immunity is to convert the ground referenced data at the trans-
mission end into a differential signal and transmit this down a balanced, twisted-pair
line. At the receiving end any induced noise voltage will appear equally on each line.
If the receiver only looks at the differential signal, any induced common mode voltage
will be rejected. This is the idea behind the RS-422 and RS-485 standards.

The RS-422 interface typically used in a point to point connection using a pair of
wires from the transmitter of Unit 1 to the receiver of the Unit 2. Another pair of
wires is from the transmitter of Unit 2 to the receiver of Unit 1. This connection al-
lows for full duplex operation, i.e. the units can transmit messages while they are re-
ceiving messages. The Square D SY/MAX family of PLCs us RS-422 communica-
tion. Their standard pinout is as follows:

Table F-5 DE9 Null Modem

Male
Connector

Female
Connector

2 3

3 2

5 5

7 8

8 7

1 4

6 1

4 6

UCM Manual F Serial Communication Overview 131

Table F-6 SY/MAX DE9S RS-422 Pinout

Figure F-3 RS-422 Setup

Like RS-485, the RS-422 protocol may be used in a multidrop configuration as shown
in Figure F-4. The RS-485 standard requires a minimum capability of 32 receivers on
the network. The RS-422 standard places no minimum requirement and therefore is
typically used in point to point or as the host of a RS-485 network.

Always connect the + terminals on the TX to the + terminals on the RX. Similarly,
connect the - terminals on the TX to the - terminals on the RX.

Note: Occasionally the manufacture incorrectly labels the polarity of the con-
nections. If the system is not working try exchanging the polarity of the
TX pair and the RX pair on the host.

With the high noise immunity and low voltage swings, the RS-422 interface may have
long runs of up to 10,000 feet.

Electrical Characteristics of RS-422.

The driver asserts a negative voltage across the receiver to represent a MARK state, a
positive voltage to represent the SPACE state. The receiver triggers off of the transi-
tion through the zero voltage point.

RS-485 (four wire)

The RS-485 interface is like the RS-422 interface with the exception that the transmit-
ters are able to tri-state, i.e. float. This allows up to 32 transmitters to be connected to
a host receiver and multiple receivers to be connected to a host transmitter. This tech-

Pin Function Description

1 TX - Transmit Data from device. (Data OUT) (inverted)

2 TX+ Transmit Data from device. (Data OUT) (non-inverted)

3 RX- Receive Data (Data IN) (inverted)

4 RX+ Receive Data (Data IN) (non-inverted)

5 CTS- Clear to Send (inverted)

6 RTS- Request to Send (inverted)

7 CTS+ Clear to Send (non-inverted)

8 RTS+ Request to Send (non-inverted)

9 Shield Shield Ground. AC coupled to chassis.

+

- -

--
+ +

+
TX

TX

RX

RX
Unit 1 Unit 2

132 Serial Communication Overview F UCM Manual

nique is called multidropping and is shown in Figure F-4. Square D PowerLogic Cir-
cuit monitors use this type of RS-485 for communication.

Figure F-4 RS-485 Four Wire Setup

As shown in Figure F-4, it is possible to use a 4 wire RS-422 port to drive a 4 wire
RS-485 multidrop network. If the RS-422 port does not have internal biasing on the
RX pair it may be necessary to add a terminator to that end of the network. The ter-
minator is a resistor correctly matched to the line which reduces reflections on the net-
work.

RS-485 (two wire)

Another version of the differential communication system is the RS-485 two wire net-
work. The two wire system is a half-duplex connection where each unit transmits and
receives on the same pair of wires. Only one transaction may occur on the network at
one time as opposed to the four wire system where the units may transmit while they
are receiving. The two wire system is inexpensive to install because only one twisted
pair cable is needed. All the + terminals are connected together, all the - terminals are
connected together. A terminating resistor is usually required on each end.
Since each unit can listen to the transmissions of every other unit on the network, peer
to peer communication is available. The trade off is that the half-duplex connection
has half of the throughput of the full duplex four wire system. A typical installation is
shown in Figure F-5.

The Allen-Bradley® Data Highway is an example of a two wire RS-485 multidrop net-
work.

+

- -

--
+ +

+
TX

TX

RX

RX
Unit 1 Unit 2

-

-
+

+

TX

RX

Unit 3

-

-
+

+

TX

RX

Unit 4

Host

Terminator

 The terminator on the Host
may not be required if the
Host is a RS-422 port with
internal biasing.

 All Niobrara RS-422 ports
have the proper internal
biasing for this type of
setup.

UCM Manual F Serial Communication Overview 133

Figure F-5 RS-485 Two wire Multidrop Setup

Note: Occasionally the manufacture incorrectly labels the polarity of the con-
nections. If the system is not working try exchanging the polarity of the
TX/RX pair on the unit.

20mA Current Loop

The 20mA Current Loop is another multidrop configuration. The transmitting mecha-
nism may be explained as simply opening a normally closed switch for the data bit
transmission. The receiver is usually a optical isolator (LED/phototransistor) unit.
Each loop is powered by a Constant Current Source. The source may be part of one of
the units or may be a separate device as shown in Figure F-6.

As in other multidrop schemes, each unit watches the RX line for its messages with its
address. The number of units on the network is dependent upon the addressing
scheme as well as the voltage supply of the constant current source. Each RX receiver
on the circuit will cause a voltage drop in the supply current. The series sum of these
drops must be a value less than the available voltage from the current supply or none
of the receivers will work.

To check, add up the voltage drops around the loop and make sure that the sum is less
than the compliance voltage of the current source.

Some Red Lion Controls equipment such as the Apollo message centers use a 20mA
current loop for serial communication.

+

- -

+
TX/RX TX/RX

Unit 1 Unit 2

-

+
TX/RX

Unit 3

-

+
TX/RX

Unit 4

Terminator

134 Serial Communication Overview F UCM Manual

Figure F-6 20mA Current Loop (Full Duplex)

A half-duplex 20mA current loop may be formed by connecting the a single current
supply through all RX and TX connections serially.

Hardware Handshaking
Sometimes it is necessary for the transmitting and receiving devices to signal each
other to control the flow of data. This may be done with special characters in the soft-
ware (see Software Handshaking on page 137.) or with physical connections to the
hardware. This physical signaling system is known as hardware handshaking. The
electrical characteristics of the handshaking lines are the same as the TX/RX lines of
the system. It may be a single-ended, ground referenced signal in RS-232, or a differ-
ential pair in RS-422 or RS-485. The two most common types of hardware handshak-
ing are: Request to Send (RTS) and Clear to Send (CTS).

Request to Send (RTS) is employed in two different modes: Request to Send (also
known as Push to Talk) and Restraint.

Request to Send (Push to Talk) mode is used by the transmitting device to signal
the receiving device that it has data to send. This is typically used in modem and
radio modem setups. When the transmitting device has data to send, it asserts its
RTS. When the modem is ready, it asserts the CTS of the transmitting device to
allow it to transmit. The transmitting device will keep RTS asserted until it has
sent all of its data.

Push to talk mode is the original mode of the RS-232 standard for connecting DTE
to DCE. This mode of RTS usage is not commonly used in most serial communi-
cation situations and is usually restricted to modems and radios.

Restraint mode is used by the receiving device to signal the transmitting device

-

+ -

+-

+ -

+
TX

TX

RX

RX
Unit 1 Unit 2

-

+

+

TX

RX

Unit 3

-

+

-

+

TX

RX

Unit 4

Host

Constant
Current
Source

+
-

+
-

-

 TX switches are normally
closed to allow current
flow. The switch is
opened for data bit
transmission.

UCM Manual F Serial Communication Overview 135

that it is sending data too quickly for to be processed. When this situation occurs,
the receiving device negates its RTS to signal the transmitting device to stop.
When the receiving device has "caught up" it asserts its RTS line to signal the
transmitting device to continue.

Restraint mode is the most common handshaking mode.

Sometimes if two RS-232 DTE devices are connected together, the DTR pin may
be used as the restraint handshake line instead of RTS.

Clear to Send (CTS) is used to signal the transmitting device that the receiving device
is ready to accept data. The transmitting device will not send data until its CTS is as-
serted.

In a typical hardware handshaking application RTS on the one device is usually con-
nected to CTS on the other.

The vast majority of cases do not require active hardware handshaking. In this case it
is common to jumper the RTS of each unit to its own CTS. This will allow each port
to transmit at will.

Software Overview

Binary Representation of Data

With the implementation of an appropriate hardware system, a uniform system must
be implemented to allow the data to be transferred.

In a synchronous serial system, each bit of data is transferred with a clock signal. This
ensures that the receiving device "knows" when each bit is transferred so it can recon-
struct the data. The throughput is determined by the number of data bits and the clock
frequency. The data synchronization is accomplished by the transmission of a sync
character which is an out-of-band character.

 The more common type of serial communication is asynchronous. In an asynchro-
nous system the character timing is determined by a local clock at each end. This
clock usually runs at 16 times the baud rate. Each bit is to stay in its MARK or
SPACE state for the time determined by the baud rate. Data is transmitted in packets
of the following form: Start bit; Data Bits, Parity Bit, Stop Bits.

Start Bit

The Start bit is always a SPACE bit and signifies the beginning of the data packet.

Data Bits

Typically 7 or 8 bits. On rare occasions may be 5 or 6 bits. The if the data is logic true
it is in the MARK state. If the data is false it is in the SPACE state. The data is trans-
mitted LSB first.

Parity Bit

The parity bit is a bit that follows the last data bit. Its determination is based upon the
type of parity selected. The most common types are ODD, EVEN, NONE, MARK,
and SPACE. These parity selections are calculated as follows.

136 Serial Communication Overview F UCM Manual

Odd: The parity bit is set to the MARK state if the number of data bits in the
MARK state are even. Therefore the total number of data bits in the
MARK state plus the parity bit is an ODD number.

Even: The parity bit is set to the MARK state if the number of data bits in the
MARK state are odd. Therefore the total number of data bits in the
MARK state plus the parity bit is an EVEN number.

None: No parity bit. The stop bit comes immediately after the last data bit.
Mark: Always logic high. Like an additional stop bit. The mark parity bit is

usually used in conjunction with 7 bit ASCII data.
Space: Always logic low. The space parity bit is usually used in conjunction

with 7 bit ASCII data.

Stop Bit

The Stop bit is always a MARK bit. There is always one stop bit, sometimes two stop
bits, and on rare occasions 1.5 stop bits. The receiving device starts timing for the
next start bit half way through the last stop bit in the message. A message with two
stop bits is the same as a message with one stop bit plus one extra character time
worth of dead space between packets. Therefore a device set for 1 stop bit can also
receive a message with 2 stop bits.

It is worth noting that the total number of bits in a packet is sometimes used to refer-
ence the type of communication. For instance, Square D SY/MAX packets have:

1 start bit + 8 data bits + 1 parity bit + 1 stop bit = 11 bits.

Most Hayes modems can only handle a 10 bit protocol. Now this may be:

1 start bit + 8 data + 0 parity + 1 stop = 10 bits
or 1 start bit + 7 data + 1 parity + 1 stop = 10 bits
or 1 start bit + 7 data + 0 parity + 2 stop = 10 bits

Since the Hayes modem is designed to handle only 10 bits per character, this explains
why it is not possible to send an 11 bit protocol like SY/MAX across these modems.
The bit count gets off when the 10th bit arrives at the modem and the modem expects
a start bit instead of the stop bit. An 11 bit modem is required for this type of commu-
nication.

Message Determination
With the above descriptions of an asynchronous serial packet, binary data may be sent
from one device to another.

Hexadecimal numbers

Binary representation is somewhat cumbersome to deal with so hexadecimal numbers
are often used. Hexadecimal (hex) numbers are base sixteen numbers. There are 16
digits in hex, the ten decimal digits 0 through 9 plus the six letters A through F which
represent the decimal numbers 10 through 15. The following is a table of the decimal
numbers 0 through 31, their hexadecimal equivalent and their binary equivalent.

UCM Manual F Serial Communication Overview 137

Notice that it takes four binary digits makes one hex digit. Conversion from binary to
hex is straight forward and explains why hex is so popular in PLCs. Since the most
PLC devices use 16-bit registers it takes 4 hex digits to represent one register i.e.
1A2F. The first two characters "1A" make up the most significant byte (8 bits) and
the last two characters make up the least significant byte.

ASCII characters

ASCII is a set of 7-bit characters used in communication, computers and programma-
ble logic controllers. The word ASCII is a acronym for American Standard Code for
Information Interchange. ASCII is a way to interpret 7 bits (or 8 bits with a leading 0)
as alphanumeric characters. There is an ASCII table following this section for your
reference.

In ASCII. the small letter "p" is represented by the binary number 0111 0000. This is
the hexadecimal number 70 or the decimal number 112.

Similarly, the capital letter "E" is represented by the binary number 0100 0101 which
is the hexadecimal number 45 or the decimal number 69.

Software Handshaking
It is common for communicating devices to need to exert control over each other.
Typically the receiving device will need to force the transmitting device to stop and
wait for it to catch up. This may be done at the hardware level (See Hardware Hand-
shaking on page 134.) or at the software level using special characters. A common way
for devices communicating with ASCII is to use the X-ON/X-OFF characters.

Table F-7 Decimal, Hex, Binary

Dec Hex Binary Dec Hex Binary

0 0 0000 16 10 0001 0000

1 1 0001 17 11 0001 0001

2 2 0010 18 12 0001 0010

3 3 0011 19 13 0001 0011

4 4 0100 20 14 0001 0100

5 5 0101 21 15 0001 0101

6 6 0110 22 16 0001 0110

7 7 0111 23 17 0001 0111

8 8 1000 24 18 0001 1000

9 9 1001 25 19 0001 1001

10 A 1010 26 1A 0001 1010

11 B 1011 27 1B 0001 1011

12 C 1100 28 1C 0001 1100

13 D 1101 29 1D 0001 1101

14 E 1110 30 1E 0001 1110

15 F 1111 31 1F 0001 1111

138 Serial Communication Overview F UCM Manual

X-ON

The X-ON character is the ASCII character DC1, which has the decimal value 17, hex
value 11, and may be generated by pressing Ctrl+Q.

When a device receives an X-ON it starts sending data from the position at which it
received an X-OFF character. The X-ON is only acted upon if the device is first
halted with an X-OFF.

X-OFF

The X-OFF character is the ASCII character DC3, which has the decimal value 19, the
hex value 13, and the may be generated by pressing Ctrl+S.

When a device receives an X-OFF it stops sending data. It will remain in this state
until an X-ON character is received. At this time, it will resume sending the data.

Obviously software handshaking is only useful when devices are sending characters
for the handshake which are out of the normal range of data. Sometimes certain proto-
cols get around this by specifying special escape sequences that the receiving device
will recognize. This is done by methods such as sending that special character once if
is to be recognized as a control character and twice if it is to be included as data.

UCM Manual F Serial Communication Overview 139

Table F-8 ASCII Table

Hex Dec Character Description Abrv Hex Dec Char. Hex Dec Char. Hex Dec Char.

00 0 [CTRL]@ Null NUL 20 32 SP 40 64 @ 60 96 ‘

01 1 [CTRL]a Start Heading SOH 21 33 ! 41 65 A 61 97 a

02 2 [CTRL]b Start of Text STX 22 34 " 42 66 B 62 98 b

03 3 [CTRL]c End Text ETX 23 35 # 43 67 C 63 99 c

04 4 [CTRL]d End Transmit EOT 24 36 $ 44 68 D 64 100 d

05 5 [CTRL]e Enquiry ENQ 25 37 % 45 69 E 65 101 e

06 6 [CTRL]f Acknowledge ACK 26 38 & 46 70 F 66 102 f

07 7 [CTRL]g Beep BEL 27 39 ’ 47 71 G 67 103 g

08 8 [CTRL]h Back space BS 28 40 (48 72 H 68 104 h

09 9 [CTRL]i Horizontal Tab HT 29 41) 49 73 I 69 105 i

0A 10 [CTRL]j Line Feed LF 2A 42 * 4A 74 J 6A 106 j

0B 11 [CTRL]k Vertical Tab VT 2B 43 + 4B 75 K 6B 107 k

0C 12 [CTRL]l Form Feed FF 2C 44 , 4C 76 L 6C 108 l

0D 13 [CTRL]m Carriage Return CR 2D 45 - 4D 77 M 6D 109 m

0E 14 [CTRL]n Shift Out SO 2E 46 . 4E 78 N 6E 110 n

0F 15 [CTRL]o Shift In SI 2F 47 / 4F 79 O 6F 111 o

10 16 [CTRL]p Device Link Esc DLE 30 48 0 50 80 P 70 112 p

11 17 [CTRL]q Dev Cont 1 X-ON DC1 31 49 1 51 81 Q 71 113 q

12 18 [CTRL]r Device Control 2 DC2 32 50 2 52 82 R 72 114 r

13 19 [CTRL]s Dev Cont 3 X-OFF DC3 33 51 3 53 83 S 73 115 s

14 20 [CTRL]t Device Control 4 DC4 34 52 4 54 84 T 74 116 t

15 21 [CTRL]u Negative Ack NAK 35 53 5 55 85 U 75 117 u

16 22 [CTRL]v Synchronous Idle SYN 36 54 6 56 86 V 76 118 v

17 23 [CTRL]w End Trans Block ETB 37 55 7 57 87 W 77 119 w

18 24 [CTRL]x Cancel CAN 38 56 8 58 88 X 78 120 x

19 25 [CTRL]y End Medium EM 39 57 9 59 89 Y 79 121 y

1A 26 [CTRL]z Substitute SUB 3A 58 : 5A 90 Z 7A 122 z

1B 27 [CTRL][Escape ESC 3B 59 ; 5B 91 [7B 123 {

1C 28 [CTRL]\ Cursor Right FS 3C 60 < 5C 92 \ 7C 124 |

1D 29 [CTRL]] Cursor Left GS 3D 61 = 5D 93] 7D 125 }

1E 30 [CTRL]^ Cursor Up RS 3E 62 > 5E 94 ^ 7E 126 ~

1F 31 [CTRL]_ Cursor Down US 3F 63 ? 5F 95 _ 7F 127 DEL

UCM Manual G UCM Language Syntax 141

Appendix G

UCM Language Syntax

STATEMENTS
ON RECEIVE <message description> GOTO <label>

ON RECEIVE <message description> RETURN

ON CHANGE R[<expr>] GOTO <label>

ON CHANGE R[<expr>] RETURN

ON CHANGE R[<expr>] & <expr> GOTO <label>

ON CHANGE R[<expr>] & <expr> RETURN

ON TIMEOUT <expr> GOTO <label>

ON TIMEOUT <expr> RETURN

WAIT

GOTO <label>

GOSUB <label>

RETURN

IF <logical> THEN one or more statements followed by a newline

IF <logical> THEN one or more statements ELSE one or more statements, newline

IF <logical> THEN newline
one or more statements
ENDIF

142 UCM Language Syntax G UCM Manual

IF <logical> THEN newline
one or more statements
ELSE
one or more statements
ENDIF

WHILE <logical> one or more statements WEND

REPEAT one or more statements UNTIL <logical>

FOR R[<expr>] = <expr> TO <expr>
one or more statements
NEXT

FOR R[<expr>] = <expr> TO <expr> STEP <expr>
one or more statements
NEXT

FOR R[<expr>] = <expr> DOWNTO <expr>
one or more statements
NEXT

FOR R[<expr>] = <expr> DOWNTO <expr> STEP <expr>
one or more statements
NEXT

R[<expr>] = <expr>

R[<expr>].<const> = <logical>

DELAY <expr>

STOP

TRANSLATE <const> : <string> = <string>

TRANSMIT <message description>

SET R[<expr>].<const>

READ <port> (<route>,...) <local>, <remote>, <count>
WRITE <port> (<route>,...) <local>, <remote>, <count>
PRINT <port> (<route>,...) <message description>

READ <port> R[<expr>] <local>, <remote>, <count>
WRITE <port> R[<expr>] <local>, <remote>, <count>
PRINT <port> R[<expr>] <message description>

CLEAR R[<expr>].<const>

TOGGLE R[<expr>].<const>

UCM Manual G UCM Language Syntax 143

SET BAUD <const>
SET CAPITALIZE <const>
SET DATA <const>
SET DEBUG <const>
SET DUPLEX <const>
SET MODE <const>
SET MULTIDROP <const>
SET PARITY <const>
SET STOP <const>

DEFINE <macro>=<replacement string> newline

CONSTANTS <const> in descriptions above
decimal numbers 12345
signed numbers -123
hexadecimal constant x12ab
reserved constants:

EVEN
ODD
NONE

boolean constants:
TRUE
FALSE

EXPRESSIONS <NUMERIC expr> above

Operators:

 - unary negation
~ unary bitwise complement
* multiplication
/ division
% modulus
+ addition
- subtraction
<< left shift
>> right shift
& bitwise AND
| bitwise OR
^ bitwise XOR
() parenthesis

Precedence:

First, operands or sub expressions in parenthesis
Then unary negation - or complement ~
Then *, /, % left to right
Then +, - left to right
Then <<, >> left to right
Then & left to right

144 UCM Language Syntax G UCM Manual

Then |, ^ left to right

Functions:

CRC(<expr>,<expr>,<expr>) {only used in message descriptions}
SUM(<expr>,<expr>,<expr>)
SUMW(<expr>,<expr>,<expr>)
LRC(<expr>,<expr>,<expr>)
LRCW(<expr>,<expr>,<expr>)
CRC16(<expr>,<expr>,<expr>)
 | | |
 | | +---- initial value usually 0 or -1
 | +----------- ending index
 +------------------ starting index

CHANGED(<expr)

CTS

EXPIRED(<expr>) {Timer Function}

FLOAT(<expr>)

TRUNC(<expr>)

MIN(<expr>,<expr>)

 MAX(<expr>,<expr>)

PORT

 SWAP(<expr>) {reverses byte order of a word}

LOGICAL EXPRESSIONS <logical> above

Logical Operators:

AND
OR
XOR
NOT (unary)

Logical Functions:

CHANGED(R[<expr>])
CHANGED(R[<expr>] & <expr>)
R[<expr>].<const> {constant bit number 1..16}

Relational Operators:

< less than
> greater than
<= less than or equal
>= greater than or equal

UCM Manual G UCM Language Syntax 145

= equal
<> not equal

ARITHMETIC VARIABLES
F[<expr>] 32 bit floating point register pair
R[<expr>] 16 bit register
$ the current index in a message description

MESSAGE DESCRIPTIONS

Operator:

: concatenation

Literal string:

Enclosed in quotes.
\xx where xx is two digit hex number can be used for non-printables
\" can be used to embed a quotation mark
\\ can be used to embed a \
\a - Bell, same as "\07", makes printers and terminals beep
\b - Backspace, "\08", nondestructive backspace
\f - Form feed, "\0c", top of form, clears some terminal screens
\n - New line, "\0a"
\r - Return, "\0d"
\t - Tab, "\09", advances to tab stop
\v - Vertical tab, "\0b", used by some printers with VFU

Unlike ’C’, the UCM compiler accepts the above sequences in upper or lower
case. These are in addition to the original UCM escape sequence:

\xx - where each x is 0..9, A..F
and last but not least: \? - where ? is any character encodes that character
which is commonly used for: \\ - literal slash or \" - literal quote
The UCM compiler does not recognize the BASIC style """" to represent "\"".

Functions:

HEX(<expr>,<expr>)
DEC(<expr>,<expr>)
UNS(<expr>,<expr>)
OCT(<expr>,<expr>)
BCD(<expr>,<expr>)
 | |
 | +-width in characters
 +------expression in TRANSMIT

R[<expr>] in ON RECEIVE to evaluate and place result in R[]
(<expr>) in ON RECEIVE to generate and match string

RAW(R[<expr>],<expr>)
| |
| +- width in characters
+-------- starting register number

146 UCM Language Syntax G UCM Manual

BYTE(<expr>)
WORD(<expr>)
RWORD(<expr>)
 |

+---- expression in transmit
 R[<expr>] in ON RECEIVE to evaluate and place result in R[]
 (<expr>) in ON RECEIVE to generate and match string

TON(<expr>)
TOFF(<expr>)
 |
 +------ translation number 1..8

UCM RUN TIME ERROR CODES
0 - Halted by clearing RUN bit
1 - Halted by STOP or RETURN statement
2 - Execution of invalid instruction (program corrupted, compiler bug)
3 - Division by zero
4 - No memory for ON CHANGE
5 - No memory for ON RECEIVE
6 - Illegal run time call (module firmware version doesn’t support compiler)
7 - Value out of bounds (register < 1 or > 2048, buffer index out of range,

SET parameter bad, output/input too long (> 256),
width specification < 0 or > 64)

8 - Checksum error in downloaded code

COMPILE.EXE Command line parameters
The COMPILE program is called using the following syntax:

COMPILE <filename> switches

<filename> refers to the text file containing the source code for the UCM. If no
extension is included in the filename then .UCM is assumed.

Various switches may follow the filename including: -D, -L, -O, -U, -V, -X, and
-?.

-D<macro>=<def> option is used for defining compile time macro substitution.
For instance if the string "Time" is used throughout the program TEST.UCM then
the command line >COMPILE TEST -Dtime=125 would set the variable time to
125.

-L<file> option is used to specify a listing file name. The default is no listing.

-O<file> option followed forces the compiler to output the compiled code into the
new filename. If the -O option is not present, the compiler places the compiled
data into the source filename with the extension .UCC.

-U option is used for forcing integers to be treated as unsigned numbers for pur-
poses of multiplication, division, and modulo.

-V provides a verbose compilation with information message.

-X<file> provides Object code dump file. Default is no dump.

-? provides a help display describing the usage information.

UCMLOAD.EXE Command line parameters
The UCMLOAD program is called using the following syntax:

UCMLOAD <channel> <file>[.UCC] <port> [<route>] switches

<channel> refers to the target UCM port for the download.

<file> refers to the file containing the compiled source code for the UCM. If no extension
is included in the filename then .UCC is assumed.

<port> refers to the serial device on the personal computer for the connection to the UCM.
COM1:, COM2:, COM3:, or COM4: would be used to access the serial port of the com-
puter. If an SFI-510 SY/LINK card is used, the base address in hex is used. SFI610 is used
for the Ethernet board.

[<route>] is the optional SY/NET route needed to reach the target UCM.

Various switches may follow the route including: -A, -S, -C, and -?.

-A enables the autostart for the download program.

-S<reg> Moves the status register pair to reg and reg+1.

-C<count> Load long program in <count> contigious channels.

-? provides a help display describing the usage information.

UCM Reserved Word List
The following lists of words are reserved by the UCM language. These words may not be used
for define macro names or labels.

148 UCM Language Syntax G UCM Manual

AND FALSE ON TIMEOUT

BCD FLOAT OR TO

BAUD FOR PARITY TOFF

BYTE FULL PORT TOGGLE

CAPITALIZE GOSUB PRINT TON

CHANGE GOTO PROGRAM TRANSLATE

CHANGED HALF RAW TRANSMIT

CLEAR HEX READ TRUE

CRC IDEC READ TRUNC

CRC16 IF RECEIVE UCM

CTS LRC RETURN UNS

DATA LRCW REPEAT UNTIL

DEBUG MAX RTS VARIABLE

DEC MIN RWORD WAIT

DEFINE MODE SET WEND

DELAY MOVE STEP WHILE

DOWNTO MULTIDROP SUM WORD

DUPLEX NEXT SUMW WRITE

ELSE NOT SWAP WRITE

ENDIF NONE SYMAX XOR

EVEN OCT THEN

EXPIRED ODD

UCM Manual H NR&D/Online BBS 149

Appendix H

NR&D/Online BBS

Niobrara Research & Development is currently offering a Bulletin Board Service for
its customers. This valuable customer service tool makes it easy to bring the user up
to date on software revisions, firmware changes, product support news, and more.

This BBS operates on a 24 hour a day basis and is accessible from any personal com-
puter equipped with a Hayes compatible modem. NR&D/Online will support com-
munications from 300 to 9600 baud, at 8 data bits, NO parity, and 1 stop bit. Set your
communications software for the baud rate of your modem, 8 data bits, NO parity, and
1 stop bit, then dial (417) 624-2028 to connect to NR&D/Online .

Once connected, you will find a message center, product bulletins, downloadable files
and software, plus other news from the NR&D product support team.

Access and online time for NR&D/Online is free! You simply pay for your phone
call.

For more information about NR&D/Online call Tom Fahrig at (800) 235-6723. He
will take your information to allow you to log on to NR&D/Online .

Niobrara is now on the Internet!

http://niobrara.com

Check it out!

UCM Manual Index 151

Index

A

AND, 34, 144

B

BAUD, 46, 70, 143
BCD, 36, 54, 79, 83, 145
BYTE, 36, 55, 85, 146

C

CAPITALIZE, 30, 39, 46, 143
CHANGE, 141. See also ON CHANGE
CHANGED, 59, 60, 144
CLEAR, 40, 142
Command Register, 31
COMPILE.EXE, 146
CRC, 34, 53, 144
CRCAB, 34
CRC16, 34, 53, 144
CTS, 15, 46, 47, 61, 126, 134, 144
Current Draw, 17

D

DATA, 46, 143
DEBUG, 30, 46, 143
DEC, 36, 55, 78, 81, 145
DEFINE, 41, 89, 143
DELAY, 41, 142
DOWNTO, 41, 142
DUPLEX, 46, 143

E

ELSE, 42, 141
ENDIF, 42, 141
ERROR Codes, 146
EVEN, 30, 48, 73, 143
EXPIRED, 144

F

FALSE, 29, 30, 40, 46, 47, 60, 143
FLOAT, 144
FOR, 39, 41, 142
FULL, 46
Functions, 145

G

GOSUB, 34, 42, 141
GOTO, 34, 42, 43, 141

H

HALF, 46
HEX, 36, 56, 77, 80, 145
HEXLC, 56

I

IDEC, 36, 56
IF, 39

L

LIGHT, 47
Line Number Registers, 32
Literal Strings, 145
LRC, 34, 54, 144
LRCW, 34, 54, 144

M

MAX, 34, 59, 60, 144
Message Assignments, 37
MIN, 34, 60, 144
MODE, 47, 143
MULTIDROP, 47, 143

N

NEXT, 41, 142

152 Index UCM Manual

NONE, 29, 30, 48, 73, 143
NOT, 34, 144

O

OCT, 36, 57, 79, 82, 145
ODD, 29, 30, 48, 73, 143
Operator, 145
OR, 34, 144

P

PARITY, 30, 48, 143
PORT, 60, 144
Power Requirements, 17
Precedence of operators, 33
PRINT, 43, 47, 88, 142
Program Area Registers, 32

R

RAW, 36, 57, 84, 145
READ, 44, 47, 85, 142
READ PROGRAM, 45
RECEIVE, 141. See also ON RECEIVE
REPEAT, 39, 45, 142
Reserved Words, 147
RETURN, 42. See also GOSUB
RTS, 15, 46, 47, 60, 126, 134
Run Time Error Registers, 33
RWORD, 36, 58, 85, 146
R[<expr>], 30

S

SET, 46, 143
STEP, 41. See also FOR
SUM, 34, 54, 144
SUMW, 34, 54, 144
SWAP, 34, 60, 144
SYMAX, 47

T

THEN, 42. See also IF
TIMEOUT, 141. See also ON TIMEOUT
TO, 41. See also FOR
TOFF, 36, 49, 58, 146
TOGGLE, 48, 142
TOGGLE LIGHT, 48
TON, 36, 49, 58, 146
TRANSLATE, 49, 142
TRANSMIT, 36, 46, 49, 77, 142
TRUE, 29, 30, 46, 47, 60, 143
TRUNC, 144

U

UCMLOAD.EXE, 147
UNS, 36, 58, 78, 81, 145
UNTIL, 142. See also REPEAT

V

Variable, 30
Variable Length Fields, 36

W

WAIT, 43, 49, 141
WEND, 49. See also WHILE
WHILE, 39, 49, 142
WORD, 36, 59, 85, 146
WRITE, 47, 50, 87, 142
WRITE PROGRAM, 51

X

XOR, 33, 144

<

<const>, 29
<expr>, 33
<label>, 34
<logical>, 34
<message description>, 35
<string>, 35

